Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658973

ABSTRACT

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Subject(s)
Alzheimer Disease , DNA Methylation , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/ethnology , Black or African American/genetics , Case-Control Studies , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Genomic Imprinting/genetics , NLR Proteins/genetics , White/genetics
2.
Heliyon ; 10(3): e25578, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356491

ABSTRACT

Background: Poor birth outcomes such as preterm birth/delivery disproportionately affect African Americans compared to White individuals. Reasons for this disparity are likely multifactorial, and include prenatal psychosocial stressors, and attendant increased lipid peroxidation; however, empirical data linking psychosocial stressors during pregnancy to oxidative status are limited. Methods: We used established scales to measure five psychosocial stressors. Maternal adverse childhood experiences, financial stress, social support, anxiety, and depression were measured among 50 African American and White pregnant women enrolled in the Stress and Health in Pregnancy cohort. Liquid chromatography-tandem mass spectrometry was used to measure biomarkers of oxidative stress (four urinary F2-isoprostane isomers), to estimate oxidative status. Linear regression models were used to evaluate associations between psychosocial stressors, prenatal oxidative status and preterm birth. Results: After adjusting for maternal obesity, gestational diabetes, and cigarette smoking, African American women with higher oxidative status were more likely to report higher maternal adverse childhood experience scores (ß = 0.16, se = 1.07, p-value = 0.024) and depression scores (ß = 0.05, se = 0.02, p = 0.014). Higher oxidative status was also associated with lower gestational age at birth (ß = -0.13, se = 0.06, p = 0.04) in this population. These associations were not apparent in Whites. However, none of the cross-product terms for race/ethnicity and social stressors reached statistical significance (p > 0.05). Conclusion: While the small sample size limits inference, our novel data suggest that psychosocial stressors may contribute significantly to oxidative stress during pregnancy, and preterm birth or delivery African Americans. If replicated in larger studies, these findings would support oxidative stress reduction using established dietary or pharmacological approaches present a potential avenue to mitigate adverse effects of psychosocial stressors on birth outcomes.

3.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293193

ABSTRACT

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

5.
Neurotox Res ; 41(5): 481-495, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552461

ABSTRACT

ß-N-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria, which has been implicated in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). It is postulated that chronic exposure to BMAA can lead to formation of protein aggregates, oxidative stress, and/or excitotoxicity, which are mechanisms involved in the etiology of ALS. While specific genetic mutations are identified in some instances of ALS, it is likely that a combination of genetic and environmental factors, such as exposure to the neurotoxin BMAA, contributes to disease. We used a transgenic zebrafish with an ALS-associated mutation, compared with wild-type fish to explore the potential neurotoxic effects of BMAA through chronic long-term exposures. While our results revealed low concentrations of BMAA in the brains of exposed fish, we found no evidence of decreased swim performance or behavioral differences that might be reflective of neurodegenerative disease. Further research is needed to determine if chronic BMAA exposure in adult zebrafish is a suitable model to study neurodegenerative disease initiation and/or progression.


Subject(s)
Amino Acids, Diamino , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Zebrafish , Neurodegenerative Diseases/etiology , Amyotrophic Lateral Sclerosis/chemically induced , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/complications , Amino Acids, Diamino/toxicity , Animals, Genetically Modified , Neurotoxins/toxicity , Superoxide Dismutase
6.
Toxicol Sci ; 195(2): 155-168, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37486259

ABSTRACT

The molecular mechanisms connecting environmental exposures to adverse endpoints are often unknown, reflecting knowledge gaps. At the Comparative Toxicogenomics Database (CTD), we developed a bioinformatics approach that integrates manually curated, literature-based interactions from CTD to generate a "CGPD-tetramer": a 4-unit block of information organized as a step-wise molecular mechanism linking an initiating Chemical, an interacting Gene, a Phenotype, and a Disease outcome. Here, we describe a novel, user-friendly tool called CTD Tetramers that generates these evidence-based CGPD-tetramers for any curated chemical, gene, phenotype, or disease of interest. Tetramers offer potential solutions for the unknown underlying mechanisms and intermediary phenotypes connecting a chemical exposure to a disease. Additionally, multiple tetramers can be assembled to construct detailed modes-of-action for chemical-induced disease pathways. As well, tetramers can help inform environmental influences on adverse outcome pathways (AOPs). We demonstrate the tool's utility with relevant use cases for a variety of environmental chemicals (eg, perfluoroalkyl substances, bisphenol A), phenotypes (eg, apoptosis, spermatogenesis, inflammatory response), and diseases (eg, asthma, obesity, male infertility). Finally, we map AOP adverse outcome terms to corresponding CTD terms, allowing users to query for tetramers that can help augment AOP pathways with additional stressors, genes, and phenotypes, as well as formulate potential AOP disease networks (eg, liver cirrhosis and prostate cancer). This novel tool, as part of the complete suite of tools offered at CTD, provides users with computational datasets and their supporting evidence to potentially fill exposure knowledge gaps and develop testable hypotheses about environmental health.


Subject(s)
Environmental Health , Toxicogenetics , Male , Humans , Databases, Factual , Phenotype , Environmental Exposure
7.
Neurotoxicology ; 96: 129-139, 2023 05.
Article in English | MEDLINE | ID: mdl-37060951

ABSTRACT

Dizziness or balance problems are estimated to affect approximately 3.3 million children aged three to 17 years. These disorders develop from a breakdown in the balance control system and can be caused by anything that affects the inner ear or the brain, including exposure to environmental toxicants. One potential environmental toxicant linked to balance disorders is cadmium, an extremely toxic metal that occurs naturally in the earth's crust and is released as a byproduct of industrial processes. Cadmium is associated with balance and vestibular dysfunction in adults exposed occupationally, but little is known about the developmental effects of low-concentration cadmium exposure. Our findings indicate that zebrafish exposed to 10-60 parts per billion (ppb) cadmium from four hours post-fertilization (hpf) to seven days post-fertilization (dpf) exhibit abnormal behaviors, including pronounced increases in auditory sensitivity and circling behavior, both of which are linked to reductions in otolith growth and are rescued by the addition of calcium to the media. Pharmacological intervention shows that agonist-induced activation of the P2X calcium ion channel in the presence of cadmium restores otolith size. In conclusion, cadmium-induced ototoxicity is linked to vestibular-based behavioral abnormalities and auditory sensitivity following developmental exposure, and calcium ion channel function is associated with these defects.


Subject(s)
Vestibular Diseases , Vestibule, Labyrinth , Animals , Zebrafish , Cadmium/toxicity , Otolithic Membrane
8.
Epigenetics ; 17(13): 1920-1943, 2022 12.
Article in English | MEDLINE | ID: mdl-35786392

ABSTRACT

Imprinted genes - critical for growth, metabolism, and neuronal function - are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.


Subject(s)
DNA Methylation , Genomic Imprinting , Adult , Humans , Chromosome Mapping , Alleles , Genomics
9.
Front Toxicol ; 4: 817999, 2022.
Article in English | MEDLINE | ID: mdl-35387429

ABSTRACT

Toxicological evaluation of chemicals using early-life stage zebrafish (Danio rerio) involves the observation and recording of altered phenotypes. Substantial variability has been observed among researchers in phenotypes reported from similar studies, as well as a lack of consistent data annotation, indicating a need for both terminological and data harmonization. When examined from a data science perspective, many of these apparent differences can be parsed into the same or similar endpoints whose measurements differ only in time, methodology, or nomenclature. Ontological knowledge structures can be leveraged to integrate diverse data sets across terminologies, scales, and modalities. Building on this premise, the National Toxicology Program's Systematic Evaluation of the Application of Zebrafish in Toxicology undertook a collaborative exercise to evaluate how the application of standardized phenotype terminology improved data consistency. To accomplish this, zebrafish researchers were asked to assess images of zebrafish larvae for morphological malformations in two surveys. In the first survey, researchers were asked to annotate observed malformations using their own terminology. In the second survey, researchers were asked to annotate the images from a list of terms and definitions from the Zebrafish Phenotype Ontology. Analysis of the results suggested that the use of ontology terms increased consistency and decreased ambiguity, but a larger study is needed to confirm. We conclude that utilizing a common data standard will not only reduce the heterogeneity of reported terms but increases agreement and repeatability between different laboratories. Thus, we advocate for the development of a zebrafish phenotype atlas to help laboratories create interoperable, computable data.

10.
Environ Epigenet ; 5(3): dvz014, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31528362

ABSTRACT

Cadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear. Aberrant methylation of a differentially methylated region (DMR) on the MEG3 gene that regulates the expression of a cluster of genes including MEG3, DLK1, MEG8, MEG9 and DIO3 has been associated with multiple cancers. In 287 infant-mother pairs, we used a combination of linear regression and the Getis-Ord Gi* statistic to determine if maternal blood Cd concentrations were associated with offspring CpG methylation of the sequence region regulating a cluster of imprinted genes including MEG3. Correlations were used to examine potential sources and routes. We observed a significant geographic co-clustering of elevated prenatal Cd levels and MEG3 DMR hypermethylation in cord blood (P = 0.01), and these findings were substantiated in our statistical models (ß = 1.70, se = 0.80, P = 0.03). These associations were strongest in those born to African American women (ß = 3.52, se = 1.32, P = 0.01) compared with those born to White women (ß = 1.24, se = 2.11, P = 0.56) or Hispanic women (ß = 1.18, se = 1.24, P = 0.34). Consistent with Cd bioaccumulation during the life course, blood Cd levels increased with age (ß = 0.015 µg/dl/year, P = 0.003), and Cd concentrations were significantly correlated between blood and urine (ρ > 0.47, P < 0.01), but not hand wipe, soil or house dust concentrations (P > 0.05). Together, these data support that prenatal Cd exposure is associated with aberrant methylation of the imprint regulatory element for the MEG3 gene cluster at birth. However, neither house-dust nor water are likely exposure sources, and ingestion via contaminated hands is also unlikely to be a significant exposure route in this population. Larger studies are required to identify routes and sources of exposure.

11.
Comput Toxicol ; 122019 Nov.
Article in English | MEDLINE | ID: mdl-31453412

ABSTRACT

Addressing the complex relationship between public health and environmental exposure requires multiple types and sources of data. An important source of chemical data derives from high-throughput screening (HTS) efforts, such as the Tox21/ToxCast program, which aim to identify chemical hazard using primarily in vitro assays to probe toxicity. While most of these assays target specific genes, assessing the disease-relevance of these assays remains challenging. Integration with additional data sets may help to resolve these questions by providing broader context for individual assay results. The Comparative Toxicogenomics Database (CTD), a publicly available database that builds networks of chemical, gene, and disease information from manually curated literature sources, offers a promising solution for contextual integration with HTS data. Here, we tested the value of integrating data across Tox21/ToxCast and CTD by linking elements common to both databases (i.e., assays, genes, and chemicals). Using polymarcine and Parkinson's disease as a case study, we found that their union significantly increased chemical-gene associations and disease-pathway coverage. Integration also enabled new disease associations to be made with HTS assays, expanding coverage of chemical-gene data associated with diseases. We demonstrate how integration enables development of predictive adverse outcome pathways using 4-nonylphenol, branched as an example. Thus, we demonstrate enhancements to each data source through database integration, including scenarios where HTS data can efficiently probe chemical space that may be understudied in the literature, as well as how CTD can add biological context to those results.

12.
ALTEX ; 36(1): 103-120, 2019.
Article in English | MEDLINE | ID: mdl-30415271

ABSTRACT

There is a need for fast, efficient, and cost-effective hazard identification and characterization of chemical hazards. This need is generating increased interest in the use of zebrafish embryos as both a screening tool and an alternative to mammalian test methods. A Collaborative Workshop on Aquatic Models and 21st Century Toxicology identified the lack of appropriate and consistent testing protocols as a challenge to the broader application of the zebrafish embryo model. The National Toxicology Program established the Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative to address the lack of consistent testing guidelines and identify sources of variability for zebrafish-based assays. This report summarizes initial SEAZIT information-gathering efforts. Investigators in academic, government, and industry laboratories that routinely use zebrafish embryos for chemical toxicity testing were asked about their husbandry practices and standard protocols. Information was collected about protocol components including zebrafish strains, feed, system water, disease surveillance, embryo exposure conditions, and endpoints. Literature was reviewed to assess issues raised by the investigators. Interviews revealed substantial variability across design parameters, data collected, and analysis procedures. The presence of the chorion and renewal of exposure media (static versus static-renewal) were identified as design parameters that could potentially influence study outcomes and should be investigated further with studies to determine chemical uptake from treatment solution into embryos. The information gathered in this effort provides a basis for future SEAZIT activities to promote more consistent practices among researchers using zebrafish embryos for toxicity evaluation.


Subject(s)
Embryo, Nonmammalian , Toxicity Tests/methods , Zebrafish/embryology , Animals , Chorion/metabolism , Drug Evaluation, Preclinical/methods , Embryonic Development/drug effects , High-Throughput Screening Assays
13.
Int J Obes (Lond) ; 42(7): 1285-1295, 2018 07.
Article in English | MEDLINE | ID: mdl-29511319

ABSTRACT

OBJECTIVE: Human obesity is a complex metabolic disorder disproportionately affecting people of lower socioeconomic strata, and ethnic minorities, especially African Americans and Hispanics. Although genetic predisposition and a positive energy balance are implicated in obesity, these factors alone do not account for the excess prevalence of obesity in lower socioeconomic populations. Therefore, environmental factors, including exposure to pesticides, heavy metals, and other contaminants, are agents widely suspected to have obesogenic activity, and they also are spatially correlated with lower socioeconomic status. Our study investigates the causal relationship between exposure to the heavy metal, cadmium (Cd), and obesity in a cohort of children and in a zebrafish model of adipogenesis. DESIGN: An extensive collection of first trimester maternal blood samples obtained as part of the Newborn Epigenetics Study (NEST) was analyzed for the presence of Cd, and these results were cross analyzed with the weight-gain trajectory of the children through age 5 years. Next, the role of Cd as a potential obesogen was analyzed in an in vivo zebrafish model. RESULTS: Our analysis indicates that the presence of Cd in maternal blood during pregnancy is associated with increased risk of juvenile obesity in the offspring, independent of other variables, including lead (Pb) and smoking status. Our results are recapitulated in a zebrafish model, in which exposure to Cd at levels approximating those observed in the NEST study is associated with increased adiposity. CONCLUSION: Our findings identify Cd as a potential human obesogen. Moreover, these observations are recapitulated in a zebrafish model, suggesting that the underlying mechanisms may be evolutionarily conserved, and that zebrafish may be a valuable model for uncovering pathways leading to Cd-mediated obesity in human populations.


Subject(s)
Adipogenesis/drug effects , Cadmium/adverse effects , Environmental Exposure/adverse effects , Maternal Exposure/adverse effects , Metals, Heavy/adverse effects , Pediatric Obesity/chemically induced , Prenatal Exposure Delayed Effects/chemically induced , Zebrafish/metabolism , Animals , Cadmium/analysis , Cadmium/blood , Disease Models, Animal , Environmental Exposure/analysis , Female , Humans , Infant, Newborn , Male , Metals, Heavy/analysis , Pediatric Obesity/blood , Pediatric Obesity/epidemiology , Pregnancy , Pregnant Women , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/epidemiology , Prospective Studies , Socioeconomic Factors , United States/epidemiology
14.
Curr Environ Health Rep ; 5(1): 110-124, 2018 03.
Article in English | MEDLINE | ID: mdl-29460222

ABSTRACT

PURPOSE OF REVIEW: Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. RECENT FINDINGS: Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.


Subject(s)
Cadmium/adverse effects , Metabolic Syndrome/chemically induced , Metals, Heavy/adverse effects , Animals , Disease Models, Animal , Humans , Lead/adverse effects , Mercury/adverse effects
15.
Article in English | MEDLINE | ID: mdl-29199130

ABSTRACT

The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.


Subject(s)
Heavy Metal Poisoning, Nervous System/etiology , Metals, Heavy/toxicity , Nerve Degeneration , Nervous System/drug effects , Neurons/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Disease Models, Animal , Gene Expression Regulation, Developmental/drug effects , Heavy Metal Poisoning, Nervous System/genetics , Heavy Metal Poisoning, Nervous System/metabolism , Heavy Metal Poisoning, Nervous System/pathology , Humans , Nervous System/metabolism , Nervous System/pathology , Nervous System/physiopathology , Neurons/metabolism , Neurons/pathology , Risk Assessment , Zebrafish/genetics , Zebrafish/metabolism
16.
Toxicol Sci ; 155(2): 485-496, 2017 02.
Article in English | MEDLINE | ID: mdl-28077779

ABSTRACT

Recent studies from mammalian, fish, and in vitro models have identified bone and cartilage development as sensitive targets for dioxins and other aryl hydrocarbon receptor ligands. In this study, we assess how embryonic 2,3,7,8-tetrachlorochlorodibenzo-p-dioxin (TCDD) exposure impacts axial osteogenesis in Japanese medaka (Oryzias latipes), a vertebrate model of human bone development. Embryos from inbred wild-type Orange-red Hd-dR and 3 transgenic medaka lines (twist:EGFP, osx/sp7:mCherry, col10a1:nlGFP) were exposed to 0.15 nM and 0.3 nM TCDD and reared until 20 dpf. Individuals were stained for mineralized bone and imaged using confocal microscopy to assess skeletal alterations in medial vertebrae in combination with a qualitative spatial analysis of osteoblast and osteoblast progenitor cell populations. Exposure to TCDD resulted in an overall attenuation of vertebral ossification characterized by truncated centra, and reduced neural and hemal arch lengths. Effects on mineralization were consistent with modifications in cell number and cell localization of transgene-labeled osteoblast and osteoblast progenitor cells. Endogenous expression of osteogenic regulators runt-related transcription factor 2 (runx2) and osterix (osx/sp7), and extracellular matrix genes osteopontin (spp1), collagen type I alpha I (col1), collagen type X alpha I (col10a1), and osteocalcin (bglap/osc) was significantly diminished at 20 dpf following TCDD exposure as compared with controls. Through global transcriptomic analysis more than 590 differentially expressed genes were identified and mapped to select pathological states including inflammatory disease, connective tissue disorders, and skeletal and muscular disorders. Taken together, results from this study suggest that TCDD exposure inhibits axial bone formation through dysregulation of osteoblast differentiation. This approach highlights the advantages and sensitivity of using small fish models to investigate how xenobiotic exposure may impact skeletal development.


Subject(s)
Oryzias/embryology , Osteogenesis/drug effects , Polychlorinated Dibenzodioxins/toxicity , Skeleton/drug effects , Animals , Calcification, Physiologic/drug effects , Down-Regulation/drug effects , Microscopy, Confocal , Musculoskeletal Diseases/metabolism , Real-Time Polymerase Chain Reaction , Skeleton/metabolism , Trans-Activators/drug effects
17.
Endocrinology ; 157(10): 3856-3872, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27571134

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting, high volume production chemical found in a variety of products. Evidence of prenatal exposure has raised concerns that developmental BPA may disrupt sex-specific brain organization and, consequently, induce lasting changes on neurophysiology and behavior. We and others have shown that exposure to BPA at doses below the no-observed-adverse-effect level can disrupt the sex-specific expression of estrogen-responsive genes in the neonatal rat brain including estrogen receptors (ERs). The present studies, conducted as part of the Consortium Linking Academic and Regulatory Insights of BPA Toxicity program, expanded this work by examining the hippocampal and hypothalamic transcriptome on postnatal day 1 with the hypothesis that genes sensitive to estrogen and/or sexually dimorphic in expression would be altered by prenatal BPA exposure. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (0-, 2.5-, 25-, 250-, 2500-, or 25 000-µg/kg body weight [bw]/d). Ethinyl estradiol was used as a reference estrogen (0.05- or 0.5-µg/kg bw/d). Postnatal day 1 brains were microdissected and gene expression was assessed with RNA-sequencing (0-, 2.5-, and 2500-µg/kg bw BPA groups only) and/or quantitative real-time PCR (all exposure groups). BPA-related transcriptional changes were mainly confined to the hypothalamus. Consistent with prior observations, BPA induced sex-specific effects on hypothalamic ERα and ERß (Esr1 and Esr2) expression and hippocampal and hypothalamic oxytocin (Oxt) expression. These data demonstrate prenatal BPA exposure, even at doses below the current no-observed-adverse-effect level, can alter gene expression in the developing brain.


Subject(s)
Benzhydryl Compounds/toxicity , Estrogens, Non-Steroidal/toxicity , Hippocampus/drug effects , Hypothalamus/drug effects , Phenols/toxicity , Transcriptome/drug effects , Administration, Oral , Animals , Animals, Newborn , Benzhydryl Compounds/administration & dosage , Estrogens, Non-Steroidal/administration & dosage , Female , Gene Expression/drug effects , Hippocampus/metabolism , Hypothalamus/metabolism , Male , Phenols/administration & dosage , Random Allocation , Rats , Rats, Sprague-Dawley , Sex Characteristics
18.
ALTEX ; 33(4): 435-452, 2016.
Article in English | MEDLINE | ID: mdl-27328013

ABSTRACT

Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We alsoreview many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.


Subject(s)
Animal Experimentation , Fishes , Hazardous Substances/toxicity , Toxicity Tests/methods , Animals , Animals, Genetically Modified , Cardiovascular Diseases/chemically induced , Genome , Genomics , Humans , Whole Body Imaging
19.
Proteomics ; 15(15): 2678-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900664

ABSTRACT

With growing abundance and awareness of endocrine disrupting compounds (EDCs) in the environment, there is a need for accurate and reliable detection of EDC exposure. Our objective in the present study was to observe differences within and between the global plasma proteomes of sexually mature male and female white perch (Morone americana) before (Initial Control, IC) and after 17ß-estradiol (E2 ) induction. Semiquantitative nanoLC-MS/MS data were analyzed by machine learning support vector machines (SVMs) and by two-way ANOVA. By ANOVA, the expression levels of 44, 77, and 57 proteins varied significantly by gender, treatment, and the interaction of gender and treatment, respectively. SVMs perfectly classified male and female perch IC and E2 -induced plasma samples using the protein expression data. E2 -induced male and female perch plasma proteomes contained significantly higher levels of the yolk precursors vitellogenin Aa and Ab (VtgAa, VtgAb), as well as latrophilin and seven transmembrane domain-containing protein 1 (Eltd1) and kininogen 1 (Kng1). This is the first report that Eltd1 and Kng1 may be E2 -responsive proteins in fishes and therefore may be useful indicators of estrogen induction.


Subject(s)
Bass/metabolism , Blood Proteins/metabolism , Estradiol/pharmacology , Fish Proteins/metabolism , Proteome/metabolism , Support Vector Machine , Animals , Blotting, Western , Chromatography, Liquid , Estrogens/pharmacology , Female , Kininogens/metabolism , Male , Nanotechnology/methods , Proteome/drug effects , Proteomics/methods , Sex Factors , Tandem Mass Spectrometry , Vitellogenins/metabolism
20.
Curr Environ Health Rep ; 1(4): 341-352, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25678986

ABSTRACT

The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.

SELECTION OF CITATIONS
SEARCH DETAIL
...