Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202411010, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895894

ABSTRACT

Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.

2.
ACS Appl Mater Interfaces ; 13(1): 1592-1602, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33355441

ABSTRACT

Spray deposition is a scalable and cost-effective technique for the fabrication of magnetic hybrid films containing diblock copolymers (DBCs) and magnetic nanoparticles. However, it is challenging to obtain spray-deposited anisotropic magnetic hybrid films without using external magnetic fields. In the present work, spray deposition is applied to prepare perpendicular anisotropic magnetic hybrid films by controlling the orientation of strontium hexaferrite nanoplatelets inside ultra-high-molecular-weight DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films. During spray deposition, the evolution of DBC morphology and the orientation of magnetic nanoplatelets are monitored with in situ grazing-incidence small-angle X-ray scattering (GISAXS). For reference, a pure DBC film without nanoplatelets is deposited with the same conditions. Solvent-controlled magnetic properties of the hybrid film are proven with solvent vapor annealing (SVA) applied to the final deposited magnetic films. Obvious changes in the DBC morphology and nanoplatelet localization are observed during SVA. The superconducting quantum interference device data show that ferromagnetic hybrid polymer films with high coercivity can be achieved via spray deposition. The hybrid films show a perpendicular magnetic anisotropy before SVA, which is strongly weakened after SVA. The spray-deposited hybrid films appear highly promising for potential applications in magnetic data storage and sensors.

3.
Macromol Rapid Commun ; 42(8): e2000513, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33047426

ABSTRACT

A one-pot approach for the preparation of diblock copolymers consisting of polystyrene and polymyrcene blocks is described via a temperature-induced block copolymer (BCP) formation strategy. A monomer mixture of styrene and myrcene is employed. The unreactive nature of myrcene in a polar solvent (tetrahydrofuran) at -78 °C enables the sole formation of active polystyrene macroinitiators, while an increase of the temperature (-38 °C to room temperature) leads to poly(styrene-block-myrcene) formation due to polymerization of myrcene. Well-defined BCPs featuring molar masses in the range of 44-117.2 kg mol-1 with dispersities, Ð, of 1.09-1.21, and polymyrcene volume fractions of 30-64% are accessible. Matrix assisted laser desorption ionization-time of flight mass spectrometry measurements reveal the temperature-controlled polymyrcene block formation, while both transmission electron microscopy and small-angle X-ray scattering measurements prove the presence of clearly microphase-separated, long range-ordered domains in the block copolymers. The temperature-controlled one-pot anionic block copolymerization approach may be general for other terpene-diene monomers.


Subject(s)
Polymers , Polystyrenes , Molecular Weight , Polymerization , Temperature
4.
ACS Appl Mater Interfaces ; 12(6): 7557-7564, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31967448

ABSTRACT

The development of diblock copolymer (DBC) nanocomposite films containing magnetic nanoparticles (NPs) with diameters (D) over 20 nm is a challenging task. To host large iron oxide NPs (Fe3O4, D = 27 ± 0.6 nm), an ultrahigh molecular weight (UHMW) linear DBC polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is used as a template in the present work. Due to hydrogen bonding between the carboxylic acid ligands of the NPs and the ester groups in PMMA, the NPs show an affinity to the PMMA block. The localization of the NPs inside the DBC is investigated as a function of the NP concentration. At low NP concentrations, NPs are located preferentially at the interface between PS and PMMA domains to minimize the interfacial tension caused by the strong segregation strength of the UHMW DBC. At high NP concentrations (≥10 wt %), chain-like NP aggregates (a head-to-tail orientation) are observed in the PMMA domains, resulting in a change of the morphology from sphere to ellipsoid for part of the PMMA domains. Magnetic properties of the hybrid films are probed via superconducting quantum interference device magnetometry. All hybrid films show ferrimagnetism and are promising for potential applications in magnetic data storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...