Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 28(9): 779-81, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11553038

ABSTRACT

1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.


Subject(s)
Aging/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Animals , Calcium/pharmacology , Cell Membrane Permeability , Male , Muscle Contraction/drug effects , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , Rats , Rats, Inbred F344 , Strontium/pharmacology
2.
Neuromuscul Disord ; 11(3): 260-8, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11297941

ABSTRACT

Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.


Subject(s)
Insulin-Like Growth Factor I/pharmacology , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Duchenne/drug therapy , Animals , Cell Size/drug effects , Cell Size/physiology , Disease Models, Animal , Male , Mice , Mice, Mutant Strains , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Organ Size/drug effects , Organ Size/physiology
3.
J Appl Physiol (1985) ; 90(3): 832-8, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11181590

ABSTRACT

We used intact fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles from rats and mice to test the hypothesis that exogenous application of an oxidant would increase maximum isometric force production (P(o)) of slow-twitch muscles to a greater extent than fast-twitch skeletal muscles. Exposure to an oxidant, hydrogen peroxide (H(2)O(2); 100 microM to 5 mM, 30 min), affected P(o) of rat muscles in a time- and dose-dependent manner. P(o) of rat soleus muscles was increased by 8 +/- 1 (SE) and 14 +/- 1% (P < 0.01) after incubation with 1 and 5 mM H(2)O(2), respectively, whereas in mouse soleus muscles P(o) was only increased after incubation with 500 microM H(2)O(2). P(o) of rat EDL muscles was affected by H(2)O(2) biphasically; initially there was a small increase (3 +/- 1%), but then P(o) diminished significantly after 30 min of treatment. In contrast, all concentrations of H(2)O(2) tested decreased P(o) of mouse EDL muscles. A reductant, dithiothreitol (DTT; rat = 10 mM, mouse = 1 mM), was added to quench H(2)O(2), and it reversed the potentiation in P(o) in rat soleus but not in rat EDL muscles or in any H(2)O(2)-treated mouse muscles. After prolonged equilibration (30 min) with 5 mM H(2)O(2) without prior activation, P(o) was potentiated in rat soleus but not EDL muscles, demonstrating that the effect of oxidation in the soleus muscles was also dependent on the activation history of the muscle. The results of these experiments demonstrate that P(o) of both slow- and fast-twitch muscles from rats and mice is modified by redox modulation, indicating that maximum P(o) of mammalian skeletal muscles is dependent on oxidation.


Subject(s)
Isometric Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Animals , Dithiothreitol/pharmacology , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Isometric Contraction/drug effects , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , Organ Specificity , Oxidation-Reduction , Rats , Rats, Sprague-Dawley
4.
J Muscle Res Cell Motil ; 21(8): 747-52, 2000.
Article in English | MEDLINE | ID: mdl-11392556

ABSTRACT

We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.


Subject(s)
Calcium/metabolism , Cell Membrane Permeability/physiology , Hydrogen Peroxide/pharmacology , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Oxidants/pharmacology , Animals , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...