Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(2-1): 024132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491582

ABSTRACT

During the intercalation of lithium in layered host materials such as graphite, lithium atoms can move within the plane between two neighboring graphene sheets, but cannot cross the sheets. Repulsive interactions between atoms in different layers lead to the existence of ordered phases called "stages," with stage n consisting of one filled layer out of n, the others being empty. Such systems can be conveniently described by a multilayer Cahn-Hilliard model, which can be seen as a mean-field approximation of a lattice-gas model with intra- and interlayer interactions between lithium atoms. In this paper, the dynamics of stage formation after a rapid quench to lower temperature is analyzed, both by a linear stability analysis and by numerical simulation of the full equations. In particular, the competition between stages 2 and 3 is studied in detail. The linear stability analysis predicts that stage 2 always grows the fastest, even in the composition range where stage 3 is the stable equilibrium state. This is borne out by the numerical simulations, which show that stage 3 emerges only during the nonlinear coarsening of stage 2. Some consequences of this finding for the charge-discharge dynamics of electrodes in batteries are briefly discussed.

2.
Phys Rev E ; 106(3-1): 034119, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266819

ABSTRACT

The kinetic equation for anisotropic motion-by-curvature is ill posed when the surface energy is strongly anisotropic. In this case, corners or edges are present on the Wulff shape, which span a range of missing orientations. In the sharp-interface problem the surface energy is augmented with a curvature-dependent term that rounds the corners and regularizes the dynamic equations. This introduces a new length scale in the problem, the corner size. In phase-field theory, a diffuse description of the interface is adopted. In this context, an approximation of the Willmore energy can be added to the phase-field energy so as to regularize the model. In this paper, we discuss the convergence of the Allen-Cahn version of the regularized phase-field model toward the sharp-interface theory for strongly anisotropic motion-by-curvature in three dimensions. Corners at equilibrium are also compared to theory for different corner sizes. Then we investigate the dynamics of the faceting instability, when initially unstable surfaces decompose into stable facets. For crystal surfaces with trigonal symmetry, we find the following scaling law L∼t^{1/3}, for the growth in time t of a characteristic morphological length scale L, and coarsening is found to proceed by either edge contraction or cube removal, as in the sharp-interface problem. Finally, we study nucleation of crystal surfaces in a two-phase system, as for a terrace-and-step surface. We find that, as compared with saddle-point nucleation, ridge crossing is dynamically favored. However, the induced nucleation mechanism, when a facet induces at its wake formation of additional facets, is not evidenced with a type-A dynamics.

3.
Phys Rev E ; 95(5-1): 053303, 2017 May.
Article in English | MEDLINE | ID: mdl-28618599

ABSTRACT

In the literature, contradictory results have been published regarding the form of the limiting (long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a log-normal distribution, other works including theoretical studies based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of OF models [R. Kobayashi, J. A. Warren, and W. C. Carter, Physica D 140, 141 (2000)PDNPDT0167-278910.1016/S0167-2789(00)00023-3; H. Henry, J. Mellenthin, and M. Plapp, Phys. Rev. B 86, 054117 (2012)PRBMDO1098-012110.1103/PhysRevB.86.054117] that an insufficient resolution of the small angle grain boundaries leads to a log-normal distribution close to those seen in the experiments and the molecular scale PFC simulations. Our paper indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process, and raises the possibility that the differences among the LGSD results from different sources may originate from differences in the detection of small angle grain boundaries.

4.
Phys Rev E ; 96(5-1): 052802, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347746

ABSTRACT

Standard two-dimensional orientation-field-based phase-field models rely on a continuous scalar field to represent crystallographic orientation. The corresponding order parameter space is the unit circle, which is not simply connected. This topological property has important consequences for the resulting multigrain structures: (i) trijunctions may be singular; (ii) for each pair of grains there exist two different grain boundary solutions that cannot continuously transform to one another; (iii) if both solutions appear along a grain boundary, a topologically stable, singular point defect must exist between them. While (i) can be interpreted in the classical picture of grain boundaries, (ii) and therefore (iii) cannot. In addition, singularities cause difficulties, such as lattice pinning in numerical simulations. To overcome these problems, we propose two formulations of the model. The first is based on a three-component unit vector field, while in the second we utilize a two-component vector field with an additional potential. In both cases, the additional degree of freedom introduced makes the order parameter space simply connected, which removes the topological stability of these defects.

5.
Phys Biol ; 12(6): 066015, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26656539

ABSTRACT

The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.


Subject(s)
Bacillus subtilis/physiology , Biofilms , Models, Biological , Diffusion
6.
Article in English | MEDLINE | ID: mdl-25768518

ABSTRACT

In directional solidification of binary eutectics, it is often observed that two-phase lamellar growth patterns grow tilted with respect to the direction z of the imposed temperature gradient. This crystallographic effect depends on the orientation of the two crystal phases α and ß with respect to z. Recently, an approximate theory was formulated that predicts the lamellar tilt angle as a function of the anisotropy of the free energy of the solid(α)-solid(ß) interphase boundary. We use two different numerical methods-phase field (PF) and dynamic boundary integral (BI)-to simulate the growth of steady periodic patterns in two dimensions as a function of the angle θ(R) between z and a reference crystallographic axis for a fixed relative orientation of α and ß crystals, that is, for a given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots without unstable interphase-boundary orientations, the two simulation methods are in excellent agreement with each other and confirm the general validity of the previously proposed theory. In addition, a crystallographic "locking" of the lamellae onto a facet plane is well reproduced in the simulations. When unstable orientations are present in the Wulff plot, it is expected that two distinct values of the tilt angle can appear for the same crystal orientation over a finite θ(R) range. This bistable behavior, which has been observed experimentally, is well reproduced by BI simulations but not by the PF model. Possible reasons for this discrepancy are discussed.

7.
Nanoscale Res Lett ; 9(1): 585, 2014.
Article in English | MEDLINE | ID: mdl-25386103

ABSTRACT

The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 2): 046707, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181307

ABSTRACT

The general problem of two-phase transport in phase-field models is analyzed: the flux of a conserved quantity is driven by the gradient of a potential through a medium that consists of domains of two distinct phases which are separated by diffuse interfaces. It is shown that the finite thickness of the interfaces induces two effects that are not present in the analogous sharp-interface problem: a surface excess current and a potential jump at the interfaces. It is shown that both effects can be eliminated simultaneously only if the coefficient of proportionality between flux and potential gradient (mobility) is allowed to become a tensor in the interfaces. This opens the possibility for precise and efficient simulations of transport problems with finite interface thickness.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 031601, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22060379

ABSTRACT

In the literature, two quite different phase-field formulations for the problem of alloy solidification can be found. In the first, the material in the diffuse interfaces is assumed to be in an intermediate state between solid and liquid, with a unique local composition. In the second, the interface is seen as a mixture of two phases that each retain their macroscopic properties, and a separate concentration field for each phase is introduced. It is shown here that both types of models can be obtained by the standard variational procedure if a grand-potential functional is used as a starting point instead of a free energy functional. The dynamical variable is then the chemical potential instead of the composition. In this framework, a complete analogy with phase-field models for the solidification of a pure substance can be established. This analogy is then exploited to formulate quantitative phase-field models for alloys with arbitrary phase diagrams. The precision of the method is illustrated by numerical simulations with varying interface thickness.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011614, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21867189

ABSTRACT

Three-dimensional phase-field simulations are employed to investigate rod-type eutectic growth morphologies in confined geometry. Distinct steady-state solutions are found to depend on this confinement effect with the rod array basis vectors and their included angle (α) changing to accommodate the geometrical constraint. Specific morphologies are observed, including rods of circular cross sections, rods of distorted (elliptical) cross sections, rods of peanut-shaped cross-sections, and lamellar structures. The results show that, for a fixed value of α > 10°, the usual (triangular) arrays of circular rods are stable in a broad range of spacings, with a transition to the peanut-shaped cross sectioned rods occurring at large spacings (above 1.5 times the minimum undercooling spacing λ(m)), and the advent of rod eliminations at low spacings. Furthermore, a transition from rod to lamellar structures is observed for α < 10° for the phase fraction of 10.5% used in the present paper.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 1): 051608, 2011 May.
Article in English | MEDLINE | ID: mdl-21728548

ABSTRACT

We investigate lamellar three-phase patterns that form during the directional solidification of ternary eutectic alloys in thin samples. A distinctive feature of this system is that many different geometric arrangements of the three phases are possible, contrary to the widely studied two-phase patterns in binary eutectics. Here, we first analyze the case of stable lamellar coupled growth of a symmetric model ternary eutectic alloy, using a Jackson-Hunt-type calculation in thin film geometry, for arbitrary configurations, and derive expressions for the front undercooling as a function of velocity and spacing. Next, we carry out phase-field simulations to test our analytic predictions and to study the instabilities of the simplest periodic lamellar arrays. For large spacings, we observe different oscillatory modes that are similar to those found previously for binary eutectics and that can be classified using the symmetry elements of the steady-state pattern. For small spacings, we observe a new instability that leads to a change in the sequence of the phases. Its onset can be well predicted by our analytic calculations. Finally, some preliminary phase-field simulations of three-dimensional growth structures are also presented.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011603, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20365380

ABSTRACT

We use a quantitative phase-field approach to study directional solidification in various three-dimensional geometries for realistic parameters of a transparent binary alloy. The geometries are designed to study the steady-state growth of spatially extended hexagonal arrays, linear arrays in thin samples, and axisymmetric shapes constrained in a tube. As a basis to address issues of dynamical pattern selection, the phase-field simulations are specifically geared to identify ranges of primary spacings for the formation of the classically observed "fingers" (deep cells) with blunt tips and "needles" with parabolic tips. Three distinct growth regimes are identified that include a low-velocity regime with only fingers forming, a second intermediate-velocity regime characterized by coexistence of fingers and needles that exist on separate branches of steady-state growth solutions for small and large spacings, respectively, and a third high-velocity regime where those two branches merge into a single one. Along the latter, the growth shape changes continuously from fingerlike to needlelike with increasing spacing. These regimes are strongly influenced by crystalline anisotropy with the third regime extending to lower velocity for larger anisotropy. Remarkably, however, steady-state shapes and tip undercoolings are only weakly dependent on the growth geometry. Those results are used to test existing theories of directional finger growth as well as to interpret the hysteretic nature of the cell-to-dendrite transition.

13.
J Phys Condens Matter ; 22(36): 364102, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-21386518

ABSTRACT

We investigate the possibility to control the symmetry of ordered states in phase-field crystal models by tuning nonlinear resonances. In two dimensions, we find that a state of square symmetry as well as the coexistence between squares and hexagons can be easily obtained. In contrast, it is delicate to obtain the coexistence of squares and liquid. We develop a general method for constructing free energy functionals that exhibit solid-liquid coexistence with desired crystal symmetries. As an example, we develop a free energy functional for square-liquid coexistence in two dimensions. A systematic analysis for determining the parameters of the necessary nonlinear terms is provided. The implications of our findings for simulations of materials with simple cubic symmetry are discussed.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(3 Pt 1): 031502, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19391945

ABSTRACT

Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(6 Pt 1): 061604, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15697378

ABSTRACT

We present a detailed derivation and thin interface analysis of a phase-field model that can accurately simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This advance with respect to previous phase-field models is achieved by the addition of a phenomenological "antitrapping" solute current in the mass conservation relation [Phys. Rev. Lett. 87, 115701 (2001)]]. This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that scale with this thickness when the diffusivity is unequal in solid and liquid [SIAM J. Appl. Math. 59, 2086 (1999)]], which include surface diffusion and a curvature correction to the Stefan condition. This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification of pure melts [Phys. Rev. E 53, R3017 (1996)]]. The performance of the model is demonstrated by calculating accurately within a phase-field approach the Mullins-Sekerka stability spectrum of a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 1): 011604, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935154

ABSTRACT

We develop electrochemical mean-field kinetic equations to simulate electrochemical cells. We start from a microscopic lattice-gas model with charged particles, and build mean-field kinetic equations following the lines of earlier work for neutral particles. We include the Poisson equation to account for the influence of the electric field on ion migration, and oxido-reduction processes on the electrode surfaces to allow for growth and dissolution. We confirm the viability of our approach by simulating (i) the electrochemical equilibrium at flat electrodes, which displays the correct charged double layer, (ii) the growth kinetics of one-dimensional electrochemical cells during growth and dissolution, and (iii) electrochemical dendrites in two dimensions.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(6 Pt 1): 061608, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12513298

ABSTRACT

Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity. We investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamellae grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...