Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 470: 115071, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38806099

ABSTRACT

The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.


Subject(s)
Avoidance Learning , Hippocampus , Muscimol , Animals , Avoidance Learning/physiology , Avoidance Learning/drug effects , Male , Hippocampus/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Muscimol/pharmacology , Female , Rats , GABA-A Receptor Agonists/pharmacology , Rats, Long-Evans , Clozapine/pharmacology , Clozapine/analogs & derivatives
2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746268

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.

3.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562746

ABSTRACT

The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.

4.
Front Behav Neurosci ; 18: 1352797, 2024.
Article in English | MEDLINE | ID: mdl-38370858

ABSTRACT

The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...