Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 21(7): 1306-12, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26001796

ABSTRACT

The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3' end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5'-3' exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1. Importantly, unlike in yeast where the DcpS homolog is an obligate cofactor for Xrn1, stability of additional Xrn1 dependent RNAs were not altered by a reduction in DcpS levels. Collectively, our data demonstrate that DcpS in conjunction with Xrn1 has the potential to regulate RNA stability in a transcript-selective manner in mammalian cells.


Subject(s)
Endoribonucleases/physiology , RNA, Messenger/genetics , Base Sequence , Cell Line , DNA Primers , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/genetics , Humans , Quinazolines/pharmacology , RNA Stability , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
2.
Hum Mol Genet ; 22(20): 4074-83, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23727836

ABSTRACT

Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Motor Neurons/drug effects , Muscular Atrophy, Spinal/physiopathology , Quinazolines/pharmacology , Ribonucleoproteins, Small Nuclear/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Mice , Mice, Transgenic , Motor Neurons/physiology , Muscles/drug effects , Muscles/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Quinazolines/administration & dosage , Quinazolines/pharmacokinetics , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Synaptic Transmission
3.
Hum Mol Genet ; 22(20): 4084-101, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23736298

ABSTRACT

Spinal muscular atrophy (SMA) is caused by insufficient levels of the survival motor neuron (SMN) protein due to the functional loss of the SMN1 gene and the inability of its paralog, SMN2, to fully compensate due to reduced exon 7 splicing efficiency. Since SMA patients have at least one copy of SMN2, drug discovery campaigns have sought to identify SMN2 inducers. C5-substituted quinazolines increase SMN2 promoter activity in cell-based assays and a derivative, RG3039, has progressed to clinical testing. It is orally bioavailable, brain-penetrant and has been shown to be an inhibitor of the mRNA decapping enzyme, DcpS. Our pharmacological characterization of RG3039, reported here, demonstrates that RG3039 can extend survival and improve function in two SMA mouse models of varying disease severity (Taiwanese 5058 Hemi and 2B/- SMA mice), and positively impacts neuromuscular pathologies. In 2B/- SMA mice, RG3039 provided a >600% survival benefit (median 18 days to >112 days) when dosing began at P4, highlighting the importance of early intervention. We determined the minimum effective dose and the associated pharmacokinetic (PK) and exposure relationship of RG3039 and DcpS inhibition ex vivo. These data support the long PK half-life with extended pharmacodynamic outcome of RG3039 in 2B/- SMA mice. In motor neurons, RG3039 significantly increased both the average number of cells with gems and average number of gems per cell, which is used as an indirect measure of SMN levels. These studies contribute to dose selection and exposure estimates for the first studies with RG3039 in human subjects.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Motor Neurons/drug effects , Motor Neurons/pathology , Muscular Atrophy, Spinal/physiopathology , Quinazolines/pharmacology , Quinazolines/pharmacokinetics , Survival of Motor Neuron 2 Protein/metabolism , Administration, Oral , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Endoribonucleases/metabolism , Female , Humans , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/drug therapy , Quinazolines/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Synapses/drug effects , Synapses/physiology
4.
PLoS One ; 8(5): e63958, 2013.
Article in English | MEDLINE | ID: mdl-23691127

ABSTRACT

BACKGROUND: Friedreich ataxia is a progressive neurodegenerative disorder caused by GAA triplet repeat expansions or point mutations in the FXN gene and, ultimately, a deficiency in the levels of functional frataxin protein. Heterozygous carriers of the expansion express approximately 50% of normal frataxin levels yet manifest no clinical symptoms, suggesting that therapeutic approaches that increase frataxin may be effective even if frataxin is raised only to carrier levels. Small molecule HDAC inhibitor compounds increase frataxin mRNA and protein levels, and have beneficial effects in animal models of FRDA. METHODOLOGY/PRINCIPAL FINDINGS: To gather data supporting the use of frataxin as a therapeutic biomarker of drug response we characterized the intra-individual stability of frataxin over time, determined the contribution of frataxin from different components of blood, compared frataxin measures in different cell compartments, and demonstrated that frataxin increases are achieved in peripheral blood mononuclear cells. Frataxin mRNA and protein levels were stable with repeated sampling over four and 15 weeks. In the 15-week study, the average CV was 15.6% for protein and 18% for mRNA. Highest levels of frataxin in blood were in erythrocytes. As erythrocytes are not useful for frataxin assessment in many clinical trial situations, we confirmed that PBMCs and buccal swabs have frataxin levels equivalent to those of whole blood. In addition, a dose-dependent increase in frataxin was observed when PBMCs isolated from patient blood were treated with HDACi. Finally, higher frataxin levels predicted less severe neurological dysfunction and were associated with slower rates of neurological change. CONCLUSIONS/SIGNIFICANCE: Our data support the use of frataxin as a biomarker of drug effect. Frataxin levels are stable over time and as such a 1.5 to 2-fold change would be detectable over normal biological fluctuations. Additionally, our data support buccal cells or PBMCs as sources for measuring frataxin protein in therapeutic trials.


Subject(s)
Biomarkers/metabolism , Friedreich Ataxia/drug therapy , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Iron-Binding Proteins/metabolism , RNA, Messenger/drug effects , Analysis of Variance , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Friedreich Ataxia/genetics , Humans , Iron-Binding Proteins/genetics , Leukocytes, Mononuclear/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Frataxin
5.
J Child Neurol ; 27(9): 1164-73, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22764181

ABSTRACT

Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors' laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin (FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.


Subject(s)
Friedreich Ataxia/drug therapy , Friedreich Ataxia/enzymology , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/therapeutic use , Animals , Clinical Trials, Phase I as Topic , Disease Models, Animal , Fluorescent Dyes , Friedreich Ataxia/genetics , Humans , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Mice , Mutation/genetics , Proteomics , Trinucleotide Repeat Expansion/genetics , ortho-Aminobenzoates , Frataxin
6.
Methods Mol Biol ; 793: 495-508, 2011.
Article in English | MEDLINE | ID: mdl-21913121

ABSTRACT

Various neurodegenerative diseases are associated with aberrant gene expression. We recently identified a novel class of pimelic o-aminobenzamide histone deacetylase (HDAC) inhibitors that show promise as therapeutics in the neurodegenerative diseases Friedreich's ataxia (FRDA) and Huntington's disease (HD). Here, we describe the various techniques used in our laboratories to dissect mechanisms of gene silencing in FRDA and HD, and to test our HDAC inhibitors for their ability to reverse changes in gene expression in cellular models.


Subject(s)
Drug Evaluation, Preclinical/methods , Friedreich Ataxia/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Huntington Disease/drug therapy , Acetylation/drug effects , Blotting, Western , Cell Line , Cell Proliferation/drug effects , Cell Separation , Chromatin/metabolism , Chromatin Immunoprecipitation , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Gene Expression Regulation/drug effects , Gene Silencing/drug effects , Histones/metabolism , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Laboratories , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Frataxin
7.
Genome Res ; 20(4): 526-36, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20219943

ABSTRACT

Information about the binding preferences of many transcription factors is known and characterized by a sequence binding motif. However, determining regions of the genome in which a transcription factor binds based on its motif is a challenging problem, particularly in species with large genomes, since there are often many sequences containing matches to the motif but are not bound. Several rules based on sequence conservation or location, relative to a transcription start site, have been proposed to help differentiate true binding sites from random ones. Other evidence sources may also be informative for this task. We developed a method for integrating multiple evidence sources using logistic regression classifiers. Our method works in two steps. First, we infer a score quantifying the general binding preferences of transcription factor binding at all locations based on a large set of evidence features, without using any motif specific information. Then, we combined this general binding preference score with motif information for specific transcription factors to improve prediction of regions bound by the factor. Using cross-validation and new experimental data we show that, surprisingly, the general binding preference can be highly predictive of true locations of transcription factor binding even when no binding motif is used. When combined with motif information our method outperforms previous methods for predicting locations of true binding.


Subject(s)
Computational Biology/methods , Genome, Human , Systems Integration , Transcription Factors/metabolism , Binding Sites/genetics , Cells, Cultured , Chromosome Mapping/methods , Forecasting , HCT116 Cells , HeLa Cells , Humans , Jurkat Cells , Logistic Models , Protein Binding , Sequence Analysis, DNA , Transcription Initiation Site
8.
Chem Biol ; 16(9): 980-9, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19778726

ABSTRACT

We recently identified a class of pimelic diphenylamide histone deacetylase (HDAC) inhibitors that show promise as therapeutics in the neurodegenerative diseases Friedreich's ataxia (FRDA) and Huntington's disease. Here, we describe chemical approaches to identify the HDAC enzyme target of these inhibitors. Incubation of a trifunctional activity-based probe with a panel of class I and class II recombinant HDAC enzymes, followed by click chemistry addition of a fluorescent dye and gel electrophoresis, identifies HDAC3 as a unique high-affinity target of the probe. Photoaffinity labeling in a nuclear extract prepared from human lymphoblasts with the trifunctional probe, followed by biotin addition through click chemistry, streptavidin enrichment, and Western blotting also identifies HDAC3 as the preferred cellular target of the inhibitor. Additional inhibitors with different HDAC specificity profiles were synthesized, and results from transcription experiments in FRDA cells point to a unique role for HDAC3 in gene silencing in Friedreich's ataxia.


Subject(s)
Friedreich Ataxia/enzymology , Gene Silencing , Histone Deacetylases/physiology , Pimelic Acids/pharmacology , Animals , Cell Line , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Friedreich Ataxia/genetics , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Photoaffinity Labels/chemistry , Pimelic Acids/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL
...