Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(4)2023 02 20.
Article in English | MEDLINE | ID: mdl-36831332

ABSTRACT

Inhibitors of soluble epoxide hydrolase (sEH), which catalyzes the hydrolysis of various natural epoxides to their corresponding diols, present an opportunity for developing oral drugs for a range of human cardiovascular and inflammatory diseases, including, among others, diabetes and neuropathic pain. However, some evidence suggests that their administration may precipitate the development of pulmonary hypertension (PH). We thus evaluated the impact of chronic oral administration of the sEH inhibitor TPPU (N-[1-(1-Oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea) on hemodynamics, pulmonary vascular reactivity, and remodeling, as well as on right ventricular (RV) dimension and function at baseline and in the Sugen (SU5416) + hypoxia (SuHx) rat model of severe PH. Treatment with TPPU started 5 weeks after SU5416 injection for 3 weeks. No differences regarding the increase in pulmonary vascular resistance, remodeling, and inflammation, nor the abolishment of phenylephrine-induced pulmonary artery constriction, were noted in SuHx rats. In addition, TPPU did not modify the development of RV dysfunction, hypertrophy, and fibrosis in SuHx rats. Similarly, none of these parameters were affected by TPPU in normoxic rats. Complementary in vitro data demonstrated that TPPU reduced the proliferation of cultured human pulmonary artery-smooth muscle cells (PA-SMCs). This study demonstrates that inhibition of sEH does not induce nor aggravate the development of PH and RV dysfunction in SuHx rats. In contrast, a potential beneficial effect against pulmonary artery remodeling in humans is suggested.


Subject(s)
Hypertension, Pulmonary , Rats , Humans , Animals , Epoxide Hydrolases/therapeutic use , Lung , Heart , Cells, Cultured
2.
Pharmacol Res ; 177: 106097, 2022 03.
Article in English | MEDLINE | ID: mdl-35085755

ABSTRACT

Tumor microenvironment plays an important role in melanoma progression. Recent studies reported endothelial cells (EC) are involved in endothelial-to-mesenchymal transition (EndMT). During this phenotypic switch, EC progressively lose their endothelial markers and acquire mesenchymal properties. Depending on their concentration, reactive oxygen species (ROS) can control tumor growth. In EC, ROS are mainly produced by NAPDH oxidases (NOX) such as NOX1 and NOX2. The aim of the present study was to determine the role of these enzymes in EndMT induced by conditioned media (CM) from SK-MEL 28 melanoma cells. The capacity of CM to induce EndMT in HUVEC after 24 h, 48 h or 72 h has been evaluated by following endothelial HUVECs proliferation, migration and their capacity to form capillary on ECMgel®. Furthermore, EndMT was confirmed by western blot and flow cytometry. To determine the role of NOX in EndMT, specific NOX1 and/or NOX2 inhibitors has been tested. TGF-ß2 + /- IL-1ß was used as positive control. ROS production was determined through DCFDA assay. An altered endothelial phenotype was found in CM-treated HUVECs. This phenotypic modification was correlated with a decrease in both capillary formation on ECMgel® and cell proliferation and an increase in cell migration. Exposure to CM for 48 h significantly enhanced intracellular HUVECs ROS production and this increase was prevented by the dual pharmacological inhibition of NOX1 and NOX2. Furthermore, inhibition of NOX1/2 also leads to a partial reversion of CM-induced EndMT. These data confirmed the role of NOX1 and NOX2 in EndMT induced by melanoma cancer cell secretome.


Subject(s)
Endothelial Cells , Melanoma , Cell Proliferation , Culture Media, Conditioned/pharmacology , Epithelial-Mesenchymal Transition , Humans , Reactive Oxygen Species , Tumor Microenvironment
3.
J Oncol ; 2019: 8361945, 2019.
Article in English | MEDLINE | ID: mdl-31467544

ABSTRACT

Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-ß (TGF-ß) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...