Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 684, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38182646

ABSTRACT

Stargardt disease type 1 (STGD1), the most common form of hereditary macular dystrophy, can be caused by biallelic combinations of over 2200 variants in the ABCA4 gene. This leads to reduced or absent ABCA4 protein activity, resulting in toxic metabolite accumulation in the retina and damage of the retinal pigment epithelium and photoreceptors. Approximately 21% of all ABCA4 variants that contribute to disease influence ABCA4 pre-mRNA splicing. This emphasizes the need for therapies to restore disrupted ABCA4 splicing and halt STGD1 progression. Previously, QR-1011, an antisense oligonucleotide (AON), successfully corrected splicing abnormalities and restored normal ABCA4 protein translation in human retinal organoids carrying the prevalent disease-causing variant c.5461-10T>C in ABCA4. Here, we investigated whether QR-1011 could also correct splicing in four less common non-canonical splice site (NCSS) variants flanking ABCA4 exon 39: c.5461-8T>G, c.5461-6T>C, c.5584+5G>A and c.5584+6T>C. We administered QR-1011 and three other AONs to midigene-transfected cells and demonstrate that QR-1011 had the most pronounced effect on splicing compared to the others. Moreover, QR-1011 significantly increased full-length ABCA4 transcript levels for c.5461-8T>G and c.5584+6T>C. Splicing restoration could not be achieved in the other two variants, suggesting their more severe effect on splicing. Overall, QR-1011, initially developed for a single ABCA4 variant, exhibited potent splice correction capabilities for two additional severe NCSS variants nearby. This suggests the possibility of a broader therapeutic impact of QR-1011 extending beyond its original target and highlights the potential for treating a larger population of STGD1 patients affected by multiple severe ABCA4 variants with a single AON.


Subject(s)
ATP-Binding Cassette Transporters , Oligodeoxyribonucleotides, Antisense , Organoids , Stargardt Disease , Humans , ATP-Binding Cassette Transporters/genetics , Exons , Retina/cytology , RNA Splicing/drug effects , Stargardt Disease/drug therapy , Stargardt Disease/genetics , Oligodeoxyribonucleotides, Antisense/pharmacology , Organoids/drug effects
2.
J Transl Med ; 21(1): 546, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587475

ABSTRACT

BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.


Subject(s)
Adenosine Triphosphatases , Retinaldehyde , Humans , Stargardt Disease/genetics , HEK293 Cells , Exons/genetics , Mutant Proteins , ATP-Binding Cassette Transporters/genetics
3.
Eur Neuropsychopharmacol ; 71: 65-74, 2023 06.
Article in English | MEDLINE | ID: mdl-37031523

ABSTRACT

The atypical antipsychotic drug olanzapine is prescribed despite clinical studies on olanzapine treatment showing mixed results on treatment efficacy in anorexia nervosa. We investigated the effect of systemic and intranasal administration of olanzapine in the activity-based anorexia (ABA) model. Rats were habituated to a running wheel and exposed to the ABA model while treated with olanzapine. During ABA rats had 1.5 h of daily access to food and ad libitum access to a running wheel for seven consecutive days. Olanzapine was administered via an osmotic minipump (1, 2.75, and 7.5 mg/kg) or intranasally 2 h before dark onset (1 and 2.75 mg/kg). We monitored body weight, food intake, wheel revolutions, body temperature, and adipose tissue. We found 2.75 and 7.5 mg/kg systemic olanzapine decreased wheel revolutions during ABA. Relative adipose tissue mass was increased in the 7.5 mg/kg olanzapine-treated group while body weight, food intake, and body temperature were unaltered by the systemic olanzapine. 1 and 2.75 mg/kg intranasal olanzapine diminished wheel revolutions and body temperature during the first 2 h after administration. The intranasal olanzapine-treated rats had a higher body weight at the end of ABA. We find that olanzapine has beneficial outcomes in the ABA via two administration routes by acting mainly on running wheel activity. Intranasal olanzapine showed a rapid effect in the first hours after administration in reducing locomotor activity. We recommend further exploring intranasal administration of olanzapine in anorectic patients to assist them in coping with restlessness.


Subject(s)
Anorexia Nervosa , Anorexia , Rats , Animals , Olanzapine/pharmacology , Administration, Intranasal , Body Weight , Anorexia Nervosa/drug therapy , Eating , Disease Models, Animal
4.
Mol Ther Nucleic Acids ; 31: 674-688, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36910710

ABSTRACT

Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 µM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.

5.
Mol Cell ; 83(4): 637-651.e9, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36764303

ABSTRACT

Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.


Subject(s)
Codon, Nonsense , Protein Biosynthesis , Humans , Codon, Nonsense/genetics , Nonsense Mediated mRNA Decay , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35943803

ABSTRACT

Huntington's disease (HD) is a late-onset neurological disorder for which therapeutics are not available. Its key pathological mechanism involves the proteolysis of polyglutamine-expanded (polyQ-expanded) mutant huntingtin (mHTT), which generates N-terminal fragments containing polyQ, a key contributor to HD pathogenesis. Interestingly, a naturally occurring spliced form of HTT mRNA with truncated exon 12 encodes an HTT (HTTΔ12) with a deletion near the caspase-6 cleavage site. In this study, we used a multidisciplinary approach to characterize the therapeutic potential of targeting HTT exon 12. We show that HTTΔ12 was resistant to caspase-6 cleavage in both cell-free and tissue lysate assays. However, HTTΔ12 retained overall biochemical and structural properties similar to those of wt-HTT. We generated mice in which HTT exon 12 was truncated and found that the canonical exon 12 was dispensable for the main physiological functions of HTT, including embryonic development and intracellular trafficking. Finally, we pharmacologically induced HTTΔ12 using the antisense oligonucleotide (ASO) QRX-704. QRX-704 showed predictable pharmacology and efficient biodistribution. In addition, it was stable for several months and inhibited pathogenic proteolysis. Furthermore, QRX-704 treatments resulted in a reduction of HTT aggregation and an increase in dendritic spine count. Thus, ASO-induced HTT exon 12 splice switching from HTT may provide an alternative therapeutic strategy for HD.


Subject(s)
Huntington Disease , Oligonucleotides, Antisense , Animals , Caspase 6 , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/pathology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Protein Isoforms/genetics , Proteolysis , Tissue Distribution
7.
Nat Med ; 28(5): 1014-1021, 2022 05.
Article in English | MEDLINE | ID: mdl-35379979

ABSTRACT

CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.


Subject(s)
Leber Congenital Amaurosis , Adult , Antigens, Neoplasm/genetics , Blindness/genetics , Cell Cycle Proteins/genetics , Child , Cytoskeletal Proteins/metabolism , Humans , Leber Congenital Amaurosis/drug therapy , Leber Congenital Amaurosis/genetics , Oligonucleotides, Antisense/adverse effects , Vision, Ocular
8.
Mol Ther ; 29(8): 2441-2455, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33895329

ABSTRACT

Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.


Subject(s)
Extracellular Matrix Proteins/metabolism , Mutation , Oligonucleotides, Antisense/administration & dosage , Retinitis Pigmentosa/drug therapy , Animals , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Exons , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Molecular , Oligonucleotides, Antisense/pharmacology , Retina/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Article in English | MEDLINE | ID: mdl-32946877

ABSTRACT

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Subject(s)
Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/therapy , Genetic Therapy/methods , Oligonucleotides, Antisense/administration & dosage , Wound Healing/genetics , Animals , Biopsy , Cell Line , Disease Models, Animal , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Exons/genetics , Fibroblasts , Fibrosis , Humans , Keratinocytes , Mice , Mice, Transgenic , Mutation , Oligonucleotides, Antisense/genetics , Primary Cell Culture , Skin/drug effects
10.
PLoS One ; 14(6): e0219182, 2019.
Article in English | MEDLINE | ID: mdl-31251792

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene encoding the epithelial chloride channel CF transmembrane conductance regulator (CFTR) protein. The most common mutation is a deletion of three nucleotides leading to the loss of phenylalanine at position 508 (p.Phe508del) in the protein. This study evaluates eluforsen, a novel, single-stranded, 33-nucleotide antisense oligonucleotide designed to restore CFTR function, in in vitro and in vivo models of p.Phe508del CF. The aims of the study were to demonstrate cellular uptake of eluforsen, and its efficacy in functional restoration of p.Phe508del-CFTR both in vitro and in vivo. In vitro, the effect of eluforsen was investigated in human CF pancreatic adenocarcinoma cells and human bronchial epithelial cells. Two mouse models were used to evaluate eluforsen in vivo. In vitro, eluforsen improved chloride efflux in CF pancreatic adenocarcinoma cell cultures and increased short-circuit current in primary human bronchial epithelial cells, both indicating restoration of CFTR function. In vivo, eluforsen was taken up by airway epithelium following oro-tracheal administration in mice, resulting in systemic exposure of eluforsen. In female F508del-CFTR mice, eluforsen significantly increased CFTR-mediated saliva secretion (used as a measure of CFTR function, equivalent to the sweat test in humans). Similarly, intranasal administration of eluforsen significantly improved nasal potential difference (NPD), and therefore CFTR conductance, in two CF mouse models. These findings indicate that eluforsen improved CFTR function in cell and animal models of p.Phe508del-CFTR-mediated CF and supported further development of eluforsen in human clinical trials, where eluforsen has also been shown to improve CFTR activity as measured by NPD.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Epithelial Cells/drug effects , Oligonucleotides, Antisense/therapeutic use , Animals , Cell Line, Tumor , Cystic Fibrosis/genetics , Disease Models, Animal , Humans , Mice , Oligonucleotides, Antisense/pharmacology
11.
Nat Med ; 25(2): 225-228, 2019 02.
Article in English | MEDLINE | ID: mdl-30559420

ABSTRACT

Photoreceptor ciliopathies constitute the most common molecular mechanism of the childhood blindness Leber congenital amaurosis. Ten patients with Leber congenital amaurosis carrying the c.2991+1655A>G allele in the ciliopathy gene centrosomal protein 290 (CEP290) were treated (ClinicalTrials.gov no. NCT03140969 ) with intravitreal injections of an antisense oligonucleotide to restore correct splicing. There were no serious adverse events, and vision improved at 3 months. The visual acuity of one exceptional responder improved from light perception to 20/400.


Subject(s)
Cilia/pathology , Leber Congenital Amaurosis/drug therapy , Leber Congenital Amaurosis/physiopathology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/therapeutic use , Photoreceptor Cells, Vertebrate/pathology , Vision, Ocular , Adult , Alleles , Antigens, Neoplasm/genetics , Cell Cycle Proteins , Cilia/drug effects , Cytoskeletal Proteins , Female , Humans , Intravitreal Injections , Male , Neoplasm Proteins/genetics , Young Adult
12.
J Immunol ; 189(7): 3397-403, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22914049

ABSTRACT

CD8(+) T cells have the potential to attack and eradicate cancer cells. The efficacy of therapeutic vaccines against cancer, however, lacks defined immune correlates of tumor eradication after (therapeutic) vaccination based on features of Ag-specific T cell responses. In this study, we examined CD8(+) T cell responses elicited by various peptide and TLR agonist-based vaccine formulations in nontumor settings and show that the formation of CD62L(-)KLRG1(+) effector-memory CD8(+) T cells producing the effector cytokines IFN-γ and TNF predicts the degree of therapeutic efficacy of these vaccines against established s.c. tumors. Thus, characteristics of vaccine-induced CD8(+) T cell responses instill a predictive determinant for the efficacy of vaccines during tumor therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Human papillomavirus 16/immunology , Immunologic Memory , Papillomavirus E7 Proteins/administration & dosage , Papillomavirus E7 Proteins/immunology , Uterine Cervical Neoplasms/prevention & control , Viral Vaccines/therapeutic use , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/virology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Injections, Subcutaneous , Mice , Mice, Congenic , Mice, Inbred C57BL , Molecular Sequence Data , Papillomavirus E7 Proteins/therapeutic use , Predictive Value of Tests , Tumor Cells, Cultured , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
13.
N Engl J Med ; 364(16): 1513-22, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21428760

ABSTRACT

BACKGROUND: Local intramuscular administration of the antisense oligonucleotide PRO051 in patients with Duchenne's muscular dystrophy with relevant mutations was previously reported to induce the skipping of exon 51 during pre-messenger RNA splicing of the dystrophin gene and to facilitate new dystrophin expression in muscle-fiber membranes. The present phase 1-2a study aimed to assess the safety, pharmacokinetics, and molecular and clinical effects of systemically administered PRO051. METHODS: We administered weekly abdominal subcutaneous injections of PRO051 for 5 weeks in 12 patients, with each of four possible doses (0.5, 2.0, 4.0, and 6.0 mg per kilogram of body weight) given to 3 patients. Changes in RNA splicing and protein levels in the tibialis anterior muscle were assessed at two time points. All patients subsequently entered a 12-week open-label extension phase, during which they all received PRO051 at a dose of 6.0 mg per kilogram per week. Safety, pharmacokinetics, serum creatine kinase levels, and muscle strength and function were assessed. RESULTS: The most common adverse events were irritation at the administration site and, during the extension phase, mild and variable proteinuria and increased urinary α(1)-microglobulin levels; there were no serious adverse events. The mean terminal half-life of PRO051 in the circulation was 29 days. PRO051 induced detectable, specific exon-51 skipping at doses of 2.0 mg or more per kilogram. New dystrophin expression was observed between approximately 60% and 100% of muscle fibers in 10 of the 12 patients, as measured on post-treatment biopsy, which increased in a dose-dependent manner to up to 15.6% of the expression in healthy muscle. After the 12-week extension phase, there was a mean (±SD) improvement of 35.2±28.7 m (from the baseline of 384±121 m) on the 6-minute walk test. CONCLUSIONS: Systemically administered PRO051 showed dose-dependent molecular efficacy in patients with Duchenne's muscular dystrophy, with a modest improvement in the 6-minute walk test after 12 weeks of extended treatment. (Funded by Prosensa Therapeutics; Netherlands National Trial Register number, NTR1241.).


Subject(s)
Alternative Splicing , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides/therapeutic use , Adolescent , Child , Child, Preschool , Creatine Kinase/urine , Dose-Response Relationship, Drug , Dystrophin/genetics , Dystrophin/metabolism , Exercise Test , Exons , Humans , Injections, Subcutaneous , Male , Muscle Strength/drug effects , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Mutation , Oligonucleotides/administration & dosage , Oligonucleotides/adverse effects , Oligonucleotides/blood , RNA/analysis
14.
Proc Natl Acad Sci U S A ; 106(33): 13915-20, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19667189

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by toxicity of an expanded, noncoding (CUG)n tract in DM protein kinase (DMPK) transcripts. According to current evidence the long (CUG)n segment is involved in entrapment of muscleblind (Mbnl) proteins in ribonuclear aggregates and stabilized expression of CUG binding protein 1 (CUGBP1), causing aberrant premRNA splicing and associated pathogenesis in DM1 patients. Here, we report on the use of antisense oligonucleotides (AONs) in a therapeutic strategy for reversal of RNA-gain-of-function toxicity. Using a previously undescribed mouse DM1 myoblast-myotube cell model and DM1 patient cells as screening tools, we have identified a fully 2'-O-methyl-phosphorothioate-modified (CAG)7 AON that silences mutant DMPK RNA expression and reduces the number of ribonuclear aggregates in a selective and (CUG)n-length-dependent manner. Direct administration of this AON in muscle of DM1 mouse models in vivo caused a significant reduction in the level of toxic (CUG)n RNA and a normalizing effect on aberrant premRNA splicing. Our data demonstrate proof of principle for therapeutic use of simple sequence AONs in DM1 and potentially other unstable microsatellite diseases.


Subject(s)
Myotonic Dystrophy/genetics , Oligonucleotides/genetics , RNA/genetics , Alleles , Animals , CELF1 Protein , Gene Silencing , Mice , Models, Genetic , Muscle, Skeletal/metabolism , Mutation , Myoblasts/metabolism , Myotonic Dystrophy/therapy , Oligonucleotides/chemistry , Oligonucleotides, Antisense/genetics , RNA Interference , RNA Splicing , RNA-Binding Proteins/genetics
15.
Blood ; 113(19): 4548-55, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19258592

ABSTRACT

Patients with Mendelian susceptibility to mycobacterial disease have severe, recurrent life-threatening infections with otherwise poorly pathogenic mycobacteria and salmonellae. The extreme susceptibility is the result of genetic defects in the interleukin-12/interferon-gamma (IL-12/IFN-gamma) pathway. The infections are difficult to treat, and therapeutic options are limited. We explored the feasibility of antisense-mediated exon skipping as therapy for Mendelian susceptibility to mycobacterial disease with cells from a complete IL-12Rbeta1(-/-) patient. Expression constructs were first studied to determine whether IL12RB1 lacking exon 2 encodes a functional protein. The IL-12Rbeta1 expression construct lacking exon 2 was expressed on T cells. On IL-12 or IL-23 stimulation, this construct phosphorylated similar amounts of STAT1, STAT3, and STAT4 and induced similar amounts of IFN-gamma compared with a normal IL-12Rbeta1 construct. Antisense oligonucleotides (AONs) directed at exon 2 resulted in transcripts lacking exon 2 in both controls' and patients' T cells. In IL-12Rbeta1(-/-) cells, skipping of exon 2 led to expression of IL-12Rbeta1 on the cell surface and responsiveness to IL-12. We showed that IL12RB1 lacking exon 2 encodes a functional IL-12Rbeta1. We demonstrated that T cells can be highly efficiently transduced with AONs and are amenable to antisense-mediated exon skipping. Furthermore, we showed that exon skipping (partly) corrects the IL-12Rbeta1 deficiency in patients' cells.


Subject(s)
Exons/genetics , Monocytes/metabolism , Oligonucleotides, Antisense/genetics , Receptors, Interleukin-12/genetics , T-Lymphocytes/metabolism , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Interferon-gamma/metabolism , Monocytes/cytology , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Interleukin-12/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
16.
J Gene Med ; 11(3): 257-66, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19140108

ABSTRACT

BACKGROUND: Antisense-mediated exon skipping is a putative treatment for Duchenne muscular dystrophy (DMD). Using antisense oligonucleotides (AONs), the disrupted DMD reading frame is restored, allowing generation of partially functional dystrophin and conversion of a severe Duchenne into a milder Becker muscular dystrophy phenotype. In vivo studies are mainly performed using 2'-O-methyl phosphorothioate (2OMePS) or morpholino (PMO) AONs. These compounds were never directly compared. METHODS: mdx and humanized (h)DMD mice were injected intramuscularly and intravenously with short versus long 2OMePS and PMO for mouse exon 23 and human exons 44, 45, 46 and 51. RESULTS: Intramuscular injection showed that increasing the length of 2OMePS AONs enhanced skipping efficiencies of human exon 45, but decreased efficiency for mouse exon 23. Although PMO induced more mouse exon 23 skipping, PMO and 2OMePS were more comparable for human exons. After intravenous administration, exon skipping and novel protein was shown in the heart with both chemistries. Furthermore, PMO showed lower intramuscular concentrations with higher exon 23 skipping levels compared to 2OMePS, which may be due to sequestration in the extracellular matrix. Finally, two mismatches rendered 2OMePS but not PMO AONs nearly ineffective. CONCLUSIONS: The results obtained in the present study indicate that increasing AON length improves skipping efficiency in some but not all cases. It is feasible to induce exon skipping and dystrophin restoration in the heart after injection of 2OMePS and unconjugated PMO. Furthermore, differences in efficiency between PMO and 2OMePS appear to be sequence and not chemistry dependent. Finally, the results indicate that PMOs may be less sequence specific than 2OMePS.


Subject(s)
Exons/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Muscular Dystrophy, Duchenne , Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Animals , Base Sequence , Humans , Mice , Mice, Inbred mdx , Molecular Sequence Data , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Myocardium/cytology , Myocardium/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Phosphorothioate Oligonucleotides/administration & dosage , Phosphorothioate Oligonucleotides/genetics
18.
N Engl J Med ; 357(26): 2677-86, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18160687

ABSTRACT

BACKGROUND: Duchenne's muscular dystrophy is associated with severe, progressive muscle weakness and typically leads to death between the ages of 20 and 35 years. By inducing specific exon skipping during messenger RNA (mRNA) splicing, antisense compounds were recently shown to correct the open reading frame of the DMD gene and thus to restore dystrophin expression in vitro and in animal models in vivo. We explored the safety, adverse-event profile, and local dystrophin-restoring effect of a single, intramuscular dose of an antisense oligonucleotide, PRO051, in patients with this disease. METHODS: Four patients, who were selected on the basis of their mutational status, muscle condition, and positive exon-skipping response to PRO051 in vitro, received a dose of 0.8 mg of PRO051 injected into the tibialis anterior muscle. A biopsy was performed 28 days later. Safety measures, composition of mRNA, and dystrophin expression were assessed. RESULTS: PRO051 injection was not associated with clinically apparent adverse events. Each patient showed specific skipping of exon 51 and sarcolemmal dystrophin in 64 to 97% of myofibers. The amount of dystrophin in total protein extracts ranged from 3 to 12% of that found in the control specimen and from 17 to 35% of that of the control specimen in the quantitative ratio of dystrophin to laminin alpha2. CONCLUSIONS: Intramuscular injection of antisense oligonucleotide PRO051 induced dystrophin synthesis in four patients with Duchenne's muscular dystrophy who had suitable mutations, suggesting that further studies might be feasible.


Subject(s)
Dystrophin/biosynthesis , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides/therapeutic use , Adolescent , Child , Drug Design , Dystrophin/analysis , Dystrophin/genetics , Exons , Humans , Injections, Intramuscular , Male , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oligonucleotides/adverse effects , Oligonucleotides, Antisense/adverse effects , RNA Splicing , RNA, Messenger/analysis , Sequence Deletion , Transcription, Genetic/drug effects
19.
Bioconjug Chem ; 15(3): 576-82, 2004.
Article in English | MEDLINE | ID: mdl-15149186

ABSTRACT

We report the synthesis of novel artificial ribonucleases with potentially improved cellular uptake. The design of trifunctional conjugates 1a and 1b is based on the specific RNA-recognizing properties of PNA, the RNA-cleaving abilities of diethylenetriamine (DETA), and the peptide (KFF)(3)K for potential uptake into E. coli. The conjugates were assembled in a convergent synthetic route involving native chemical ligation of a PNA, containing an N-terminal cysteine, with the C-terminal thioester of the cell-penetrating (KFF)(3)K peptide to give 12a and 12b. These hybrids contained a free cysteine side-chain, which was further functionalized with an RNA-hydrolyzing diethylenetriamine (DETA) moiety. The trifunctional conjugates (1a, 1b) were evaluated for RNA-cleaving properties in vitro and showed efficient degradation of the target RNA at two major cleavage sites. It was also established that the cleavage efficiency strongly depended on the type of spacer connecting the PNA and the peptide.


Subject(s)
Peptide Nucleic Acids/chemistry , Peptides/chemistry , Polyamines/chemistry , Ribonucleases/chemical synthesis , Escherichia coli/metabolism , Peptide Nucleic Acids/chemical synthesis , Peptide Nucleic Acids/pharmacokinetics , Peptides/chemical synthesis , Peptides/pharmacokinetics , Polyamines/chemical synthesis , Polyamines/pharmacokinetics , RNA/drug effects , RNA/metabolism , Ribonucleases/chemistry , Ribonucleases/pharmacokinetics , Substrate Specificity
20.
Eur J Immunol ; 33(1): 172-82, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12594846

ABSTRACT

Linkage studies indicate close associations of certain HLA alleles with autoimmune diseases. To better understand how specific HLA alleles are related to disease pathogenesis, we have generated an HLA DR3/DQ2 transgenic mouse utilizing a 550-kb yeast artificial chromosome (YAC) construct containing the complete DRalpha, DRbeta1, DRbeta3, DQalpha, and DQbeta regions. The transgenic mouse (4D1/C2D) in an I-Abeta(o) background appears healthy with no signs of autoimmune diseases. Lymphoid tissues as well as CD4(+) T cells develop normally. Characterization of the transgene expression demonstrates that approximately 90% of B cells express high levels of DR3 and 50-70% of B cells express DQ2. CD11c(+) dendritic cells express high levels of DR and DQ. Approximately 12-18% of resting T cells are positive for DR expression, and further up-regulation to 40-50% expression is seen upon activation with anti-CD3/anti-CD28 mAb. These results suggest that the transgenic construct confers a high fidelity to the normal human temporal and spatial expression profile. Analysis of T cell receptor repertoire in transgenic mice confirms that DR3/DQ2 are able to mediate thymic selection. Furthermore, transgenic mice respond to a DR3-restricted antigen, demonstrating antigen processing and presentation by antigen-presenting cells (APC). Purified T cells from ovalbumin (OVA)-immunized 4D1 mice respond to human APC co-cultured with OVA, suggesting appropriate antigen/DR3 or DQ2 recognition by murine T cells. Immunoglobulin isotype switching is also observed, indicating functional T-B cognate interactions. Thus, the DR3/DQ2 transgenic mouse has normal lymphoid development and functionality that are mediated by HLA transgenes and can be used to investigate HLA-associated immunological questions.


Subject(s)
Autoimmune Diseases/immunology , HLA-DQ Antigens/immunology , HLA-DR3 Antigen/immunology , Models, Animal , Animals , Antigen-Presenting Cells/immunology , Antigens/immunology , Autoimmune Diseases/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Flow Cytometry , Gene Expression , HLA-DQ Antigens/genetics , HLA-DR3 Antigen/genetics , Humans , Mice , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thymus Gland/cytology , Thymus Gland/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...