Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 15(1): 86, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30866933

ABSTRACT

BACKGROUND: Several species-specific PCR assays, based on a variety of target genes are currently used in the diagnosis of Mycoplasma bovis infections in cattle herds with respiratory diseases and/or mastitis. With this diversity of methods, and the development of new methods and formats, regular performance comparisons are required to ascertain diagnostic quality. The present study compares PCR methods that are currently used in six national veterinary institutes across Europe. Three different sample panels were compiled and analysed to assess the analytical specificity, analytical sensitivity and comparability of the different PCR methods. The results were also compared, when appropriate, to those obtained through isolation by culture. The sensitivity and comparability panels were composed of samples from bronchoalveolar fluids of veal calves, artificially contaminated or naturally infected, and hence the comparison of the different methods included the whole workflow from DNA extraction to PCR analysis. RESULTS: The participating laboratories used i) five different DNA extraction methods, ii) seven different real-time and/or end-point PCRs targeting four different genes and iii) six different real-time PCR platforms. Only one commercial kit was assessed; all other PCR assays were in-house tests adapted from published methods. The analytical specificity of the different PCR methods was comparable except for one laboratory where Mycoplasma agalactiae was tested positive. Frequently, weak-positive results with Ct values between 37 and 40 were obtained for non-target Mycoplasma strains. The limit of detection (LOD) varied from 10 to 103 CFU/ml to 103 and 106 CFU/ml for the real-time and end-point assays, respectively. Cultures were also shown to detect concentrations down to 102 CFU/ml. Although Ct values showed considerable variation with naturally infected samples, both between laboratories and tests, the final result interpretation of the samples (positive versus negative) was essentially the same between the different laboratories. CONCLUSION: With a few exceptions, all methods used routinely in the participating laboratories showed comparable performance, which assures the quality of diagnosis, despite the multiplicity of the methods.


Subject(s)
Cattle Diseases/diagnosis , Mycoplasma Infections/veterinary , Mycoplasma bovis/isolation & purification , Polymerase Chain Reaction/veterinary , Animals , Bronchoalveolar Lavage Fluid/microbiology , Cattle , Cattle Diseases/microbiology , Europe , Mycoplasma Infections/diagnosis , Mycoplasma agalactiae/genetics , Mycoplasma agalactiae/isolation & purification , Mycoplasma bovis/genetics , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
PLoS One ; 13(11): e0206505, 2018.
Article in English | MEDLINE | ID: mdl-30408075

ABSTRACT

The prion hypothesis proposes a causal relationship between the misfolded prion protein (PrPSc) molecular entity and the disease transmissible spongiform encephalopathy (TSE). Variations in the conformation of PrPSc are associated with different forms of TSE and different risks to animal and human health. Since the discovery of atypical forms of bovine spongiform encephalopathy (BSE) in 2003, scientists have progressed the molecular characterisation of the associated PrPSc in order to better understand these risks, both in cattle as the natural host and following experimental transmission to other species. Here we report the development of a mass spectrometry based assay for molecular characterisation of bovine proteinase K (PK) treated PrPSc (PrPres) by quantitative identification of its N-terminal amino acid profiles (N-TAAPs) and tryptic peptides. We have applied the assay to classical, H-type and L-type BSE prions purified from cattle, transgenic (Tg) mice expressing the bovine (Tg110 and Tg1896) or ovine (TgEM16) prion protein gene, and sheep brain. We determined that, for classical BSE in cattle, the G96 N-terminal cleavage site dominated, while the range of cleavage sites was wider following transmission to Tg mice and sheep. For L-BSE in cattle and Tg bovinised mice, a C-terminal shift was identified in the N-TAAP distribution compared to classical BSE, consistent with observations by Western blot (WB). For L-BSE transmitted to sheep, both N-TAAP and tryptic peptide profiles were found to be changed compared to cattle, but less so following transmission to Tg ovinised mice. Relative abundances of aglycosyl peptides were found to be significantly different between the atypical BSE forms in cattle as well as in other hosts. The enhanced resolution provided by molecular analysis of PrPres using mass spectrometry has improved insight into the molecular changes following transmission of atypical BSE to other species.


Subject(s)
Encephalopathy, Bovine Spongiform/metabolism , Mass Spectrometry , Prion Proteins/metabolism , Sheep , Amino Acid Sequence , Animals , Cattle , Chromatography, High Pressure Liquid , Disease Models, Animal , Encephalopathy, Bovine Spongiform/transmission , Mice , Mice, Transgenic , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Prion Proteins/chemistry
3.
J Virol ; 88(3): 1830-3, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24257620

ABSTRACT

Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer.


Subject(s)
Deer/metabolism , Disease Models, Animal , Encephalopathy, Bovine Spongiform/metabolism , Mice , Prions/metabolism , Wasting Disease, Chronic/metabolism , Animals , Cattle , Central Nervous System/metabolism , Central Nervous System/pathology , Disease Susceptibility , Encephalopathy, Bovine Spongiform/pathology , Encephalopathy, Bovine Spongiform/transmission , Female , Male , Mice, Transgenic , Species Specificity , Wasting Disease, Chronic/pathology , Wasting Disease, Chronic/transmission
4.
J Gen Virol ; 94(Pt 11): 2577-2586, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23761404

ABSTRACT

Development of transgenic mouse models expressing heterologous prion protein (PrP) has facilitated and advanced in vivo studies of prion diseases affecting humans and animals. Here, novel transgenic mouse lines expressing a chimaeric murine/ovine (Mu/Ov) PrP transgene, including amino acid residues alanine, histidine and glutamine at ovine polymorphic codons 136, 154 and 171 (A136H154Q171), were generated to provide a means of assessing the susceptibility of the ovine AHQ allele to ruminant prion diseases in an in vivo model. Transmission studies showed that the highest level of transgene overexpression, in Tg(Mu/OvPrP(AHQ))EM16 (EM16) mice, conferred high susceptibility to ruminant prions. Highly efficient primary transmission of atypical scrapie from sheep was shown, irrespective of donor sheep PrP genotype, with mean incubation periods (IPs) of 154­178 days post-inoculation (p.i.), 100% disease penetrance and early Western blot detection of protease-resistant fragments (PrP(res)) of the disease-associated isoform, PrP(Sc), in EM16 brain from 110 days p.i. onwards. EM16 mice were also highly susceptible to classical scrapie and bovine spongiform encephalopathy (BSE), with mean IPs 320 and 246 days faster, respectively, than WT mice. Primary passage of atypical scrapie, classical scrapie and BSE showed that the PrP(res) profiles associated with disease in the natural host were faithfully maintained in EM16 mice, and were distinguishable based on molecular masses, antibody reactivities and glycoform percentages. Immunohistochemistry was used to confirm PrP(Sc) deposition in brain sections from terminal phase transmissible spongiform encephalopathy-challenged EM16 mice. The findings indicate that EM16 mice represent a suitable bioassay model for detection of atypical scrapie infectivity and offer the prospect of differentiation of ruminant prions.


Subject(s)
Mice, Transgenic/metabolism , Prion Diseases/metabolism , Prion Diseases/transmission , Prions/metabolism , Recombinant Fusion Proteins/metabolism , Ruminants/metabolism , Up-Regulation , Animals , Brain/metabolism , Brain/pathology , Cattle , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/transmission , Humans , Mice , Prions/genetics , Recombinant Fusion Proteins/genetics , Ruminants/genetics , Scrapie/metabolism , Scrapie/transmission , Sheep , Transgenes
5.
J Gen Virol ; 91(Pt 8): 2132-2138, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20392900

ABSTRACT

Twenty-four atypical scrapie cases from sheep with different prion protein genotypes from Great Britain were transmitted to transgenic tg338 and/or TgshpXI mice expressing sheep PrP alleles, but failed to transmit to wild-type mice. Mean incubation periods were 200-300 days in tg338 mice and 300-500 days in TgshpXI mice. Survival times in C57BL/6 and VM/Dk mice were >700 days. Western blot analysis of mouse brain samples revealed similar multi-band, protease-resistant prion protein (PrP(res)) profiles, including an unglycosylated band at approximately 8-11 kDa, which was shown by antibody mapping to correspond to the approximately 93-148 aa portion of the PrP molecule. In transgenic mice, the incubation periods, Western blot PrP(res) profiles, brain lesion profiles and abnormal PrP (PrP(Sc)) distribution patterns produced by the Great Britain atypical scrapie isolates were similar and compatible with the biological characteristics of other European atypical scrapie or Nor98 cases.


Subject(s)
Scrapie/transmission , Sheep Diseases/transmission , Animals , Blotting, Western , Brain/pathology , Histocytochemistry , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Weight , Prions/chemistry , Prions/isolation & purification , Sheep , Survival Analysis , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...