Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0265405, 2022.
Article in English | MEDLINE | ID: mdl-35294505

ABSTRACT

Asparagus wild relatives could be a promising possibility to extent the genetic variability of garden asparagus and for new cultivars with favorable traits such as high yield stability, disease resistance and stress tolerance. In order to achieve an efficient use in breeding, a detailed cytogenetic characterization of the accessions is necessary. This study worked on 35 Asparagus accessions, including A. officinalis cultivars ('Darlise', 'Ravel' and 'Steiners Violetta') and Asparagus wild relatives, for which the number of chromosomes, their size, the nuclear DNA content, and the genomic distribution of 5S and 45S rDNA were analyzed. Different ploidy levels (diploid, triploid, tetraploid, pentaploid and hexaploid) were found. Furthermore, the size of the chromosomes of all diploid Asparagus accessions was determined which led to differences in the karyotypic formula. A. plocamoides harbors the smallest chromosome with 1.21 µm, whereas the largest chromosome with 5.43 µm was found in A. officinalis. In all accessions one 5S rDNA locus per genome was observed, while the number of 45S rDNA loci varied between one (A. albus, A. plumosus, A. stipularis) to four (A. setaceus). In most Asparagus accessions, the 5S and 45S rDNA signals were located on different chromosomes. In contrast, the genomes of A. africanus, A. plocamoides, A. sp. (a taxonomically unclassified Asparagus species from Asia) and A. verticillatus (diploid accessions) have one 5S and one 45S rDNA signal on the same chromosome. The measured 2C DNA content ranges from 1.43 pg (A. plocamoides, diploid) to 8.24 pg (A. amarus, hexaploid). Intraspecific variations for chromosome number, karyotypic formula, signal pattern with 5S and 45s rDNA probes and DNA content were observed. Interspecific variations were also recognized in the genus Asparagus.


Subject(s)
Chromosomes, Plant , Plant Breeding , Chromosomes, Plant/genetics , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Ploidies , RNA, Ribosomal, 5S/genetics
2.
PLoS Genet ; 12(1): e1005768, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26730850

ABSTRACT

The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5' splice site of both genes revealed that proper transient interaction with the 5' end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5' splice sites and weak branch sequences.


Subject(s)
Protein Serine-Threonine Kinases/genetics , RNA Splice Sites/genetics , RNA Splicing/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Cell Cycle Proteins/genetics , Introns/genetics , Mutation , RNA Splicing Factors , Ribonucleoproteins, Small Nuclear/genetics , Spliceosomes/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...