Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 124(5): 516-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32389315

ABSTRACT

Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50-90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.


Subject(s)
Fungi , Trace Elements , Aspergillus fumigatus/chemistry , Candida albicans/chemistry , Cryptococcus neoformans/chemistry , Fungi/chemistry , Saccharomyces cerevisiae/chemistry , Stress, Physiological , Trace Elements/analysis
2.
Nature ; 555(7696): 382-386, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489751

ABSTRACT

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Subject(s)
Aspergillus fumigatus/immunology , Lectins, C-Type/immunology , Melanins/immunology , Naphthols/immunology , Animals , Aspergillosis/immunology , Aspergillosis/microbiology , Aspergillosis/prevention & control , Aspergillus fumigatus/chemistry , Aspergillus fumigatus/pathogenicity , Cell Wall/chemistry , Cell Wall/immunology , Female , Humans , Macrophages/immunology , Melanins/chemistry , Mice , Mice, Inbred C57BL , Naphthols/chemistry , Rats , Rats, Sprague-Dawley , Spores, Fungal/chemistry , Spores, Fungal/immunology , Substrate Specificity
3.
Semin Immunopathol ; 37(2): 97-106, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25420452

ABSTRACT

Receptors of the innate immune system are the first line of defence against infection, being able to recognise and initiate an inflammatory response to invading microorganisms. The Toll-like (TLR), NOD-like (NLR), RIG-I-like (RLR) and C-type lectin-like receptors (CLR) are four receptor families that contribute to the recognition of a vast range of species, including fungi. Many of these pattern recognition receptors (PRRs) are able to initiate innate immunity and polarise adaptive responses upon the recognition of fungal cell wall components and other conserved molecular patterns, including fungal nucleic acids. These receptors induce effective mechanisms of fungal clearance in normal hosts, but medical interventions, immunosuppression or genetic predisposition can lead to susceptibility to fungal infections. In this review, we highlight the importance of PRRs in fungal infection, specifically CLRs, which are the major PRR involved. We will describe specific PRRs in detail, the importance of receptor collaboration in fungal recognition and clearance, and describe how genetic aberrations in PRRs can contribute to disease pathology.


Subject(s)
Fungi/immunology , Fungi/metabolism , Immunity , Mycoses/immunology , Mycoses/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Fungi/pathogenicity , Humans , Immune Evasion , Lectins, C-Type/metabolism , Mycoses/genetics , Mycoses/microbiology , Protein Binding , Th17 Cells/immunology , Th17 Cells/metabolism , Toll-Like Receptors/metabolism
4.
Int Rev Immunol ; 32(2): 134-56, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23570314

ABSTRACT

Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/immunology , Amino Acid Motifs/immunology , Animals , Homeostasis , Humans , Immunity, Innate , Intracellular Signaling Peptides and Proteins/immunology , Lectins, C-Type/agonists , Ligands , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...