Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(5): e2200526, 2023 05.
Article in English | MEDLINE | ID: mdl-36808690

ABSTRACT

In the human eye lenses, the crystallin proteins facilitate transparency, light refraction, as well as UV light protection. A deregulated balanced interplay between α-, ß-, and γ-crystallin can cause cataract. γD-crystallin (hγD) is involved in the energy dissipation of absorbed UV light by energy transfer between aromatic side chains. Early UV-B induced damage of hγD with molecular resolution is studied by solution NMR and fluorescence spectroscopy. hγD modifications are restricted to Tyr 17 and Tyr 29 in the N-terminal domain, where a local unfolding of the hydrophobic core is observed. None of the tryptophan residues assisting fluorescence energy transfer is modified and hγD is remained soluble over month. Investigating isotope-labeled hγD surrounded by eye lens extracts from cataract patients reveals very week interactions of solvent-exposed side chains in the C-terminal hγD domain and some remaining photoprotective properties of the extracts. Hereditary E107A hγD found in the eye lens core of infants developing cataract shows under the here used conditions a thermodynamic stability comparable to the wild type but an increased sensitivity toward UV-B irradiation.


Subject(s)
Cataract , Lens, Crystalline , gamma-Crystallins , Humans , gamma-Crystallins/chemistry , gamma-Crystallins/metabolism , Ultraviolet Rays , Protein Folding , Lens, Crystalline/metabolism , Cataract/metabolism
2.
Langmuir ; 38(28): 8595-8606, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35786894

ABSTRACT

Investigating how hydrophobic molecules mix with phospholipid bilayers and how they affect membrane properties is commonplace in biophysics. Despite this, a molecular-level empirical description of a membrane model as simple as a phospholipid bilayer with long linear hydrophobic chains incorporated is still missing. Here, we present an unprecedented molecular characterization of the incorporation of two long n-alkanes, n-eicosane (C20) and n-triacontane (C30) with 20 and 30 carbons, respectively, in phosphatidylcholine (PC) bilayers using a combination of experimental techniques (2H NMR, 31P NMR, 1H-13C dipolar recoupling solid-state NMR, X-ray scattering, and cryogenic electron microscopy) and atomistic molecular dynamics (MD) simulations. At low hydration, deuterated C20 and C30 yield 2H NMR spectra evidencing anisotropic-motion, which demonstrates their miscibility in PC membranes up to a critical alkane-to-acyl-chain volume fraction, ϕc. The acquired 2H NMR spectra of C20 and C30 have notably different lineshapes. At low alkane volume fractions below ϕc, CHARMM36 MD simulations predict such 2H NMR spectra qualitatively and thus enable an atomistic-level interpretation of the spectra. Above ϕc, the 2H NMR lineshapes become characteristic of motions in the intermediate-regime that, together with the MD simulation results, suggest the onset of immiscibility between the alkane molecules and the acyl chains. For all the systems investigated, the phospholipid molecular structure is unperturbed by the presence of the alkanes. However, at conditions of excess hydration and at surprisingly low alkane fractions below ϕc, a peak characteristic of isotropic motion is observed in both the 2H spectra of the alkanes and 31P spectra of the phospholipids, strongly indicating that the incorporation of the alkanes induces a reduction on the average radius of the lipid vesicles.


Subject(s)
Lipid Bilayers , Phospholipids , Alkanes , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...