Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 11(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30577686

ABSTRACT

The compound 4-thioureidoiminomethylpyridinium perchlorate (perchlozone©) is a novel anti-tuberculosis drug that is active in multiple drug resistance cases, but the compound is hepatotoxic. To decrease the systemic load and to achieve targeting, we encapsulated the drug into poly(lactic acid)-based micro- (1100 nm) and nanoparticles (170 nm) that were modified with single-chain camel immunoglobulin G (IgG) for targeting. Both micro- and nanoparticles formed stable suspensions in saline solution at particle concentrations of 10⁻50 mg/mL. The formulations were injected intraperitoneally and intravenously into the mice with experimental tuberculosis. The survival of control animals was compared to that of mice which were treated with daily oral drug solution, single intraperitoneal administration of drug-loaded particles, and those treated both intravenously and intraperitoneally by drug-loaded particles modified with polyclonal camel IgGs. The distribution of particles in the organs of mice was analyzed with immunofluorescence and liquid chromatography/mass spectrometry. Morphological changes related to tuberculosis and drug toxicity were registered. Phagocytic macrophages internalized particles and transported them to the foci of tuberculosis in inner organs. Nanoparticle-based drug formulations, especially those with IgG, resulted in better survival and lower degree of lung manifestations than the other modes of treatment.

2.
J Sep Sci ; 32(15-16): 2674-81, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19603391

ABSTRACT

LC on short monolithic columns (Convective Interaction Medium Disks) was applied to investigate several specially synthesized water soluble polycations of different charge type (primary, tertiary, quaternary amine), as well as a copolymer of neutral saccharide and cationic monomers, regarding their ability to form reversible complexes with DNA. For this purpose, two separation modes were used, namely, pseudo-affinity and cation-exchange chromatography. Synthetic polynucleotides, namely, polyriboadenylic acid (poly(rA)) and polyribocytidylic acid (poly(rC)), were used as approximate structural analogues of DNA. In first case, the hypothetical specific binding between dissolved polymers and polynucleotide (poly(rA) or poly(rC)), covalently attached to epoxy-bearing monolithic sorbent, has been studied and compared to the results obtained using cation exchange chromatography. Quantitative parameters of interactions between macromolecules were established using frontal elution method.


Subject(s)
Chromatography, Liquid/instrumentation , Polyamines/chemistry , Polynucleotides/chemistry , Chromatography, Liquid/methods , Ligands , Molecular Structure , Polyelectrolytes , Polymers/chemistry
3.
J Chromatogr A ; 1065(1): 19-28, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15782946

ABSTRACT

The technology for preparation of rigid macroporous polymers suggested in the late 1980s has become a powerful instrument for the development of a novel scientific and practical field. At present, monolithic stationary phases are widely used in the processes of bioseparation (chromatography), bioconversion (enzyme reactors) as well as in other processes based on interphase mass distribution (for example, solid phase peptide and oligonucleotide synthesis). Bioaffinity modes of suggested dynamic methods are very promising for their use in different analytical processes (immunological, ecological, medical and other types of analytical monitoring), preparative isolation of blood proteins such as myoglobin, hemoglobin, immunoglobulins, etc. and also recombinant products directly from cell supernatants or lysates. For the first time, it has been shown that bioaffinity pairing with participation of immobilized on carefully designed rigid supports is very fast and the whole process of affinity separation can be realized within second time scale. The principle of bioaffinity recognition is generaly at the construction of biological reactors (for example, enzyme reactors). Improved kinetics of biocatalized reactions is explained by a minimal influence on the surface of the used sorbent. Very perspective field is the use of discussed monoliths for solid phase chemical synthesis of fragments of biological macromolecules (peptides and oligonucleotides). Several examples of these applications will be presented and discussed.


Subject(s)
Chromatography, Liquid/instrumentation , Methacrylates/chemistry
4.
J Chromatogr A ; 1065(1): 75-81, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15782953

ABSTRACT

High-performance monolithic disk affinity chromatography was applied to the investigation of formation of complexes between (1) complementary polyriboadenylic and polyribouridylic acids, e.g. poly(A) and poly(U), respectively, (2) poly(A) and synthetic polycation poly(allylamine), pAA. Polyriboadenylic acid and poly(allylamine) were immobilized on macroporous disks (CIM disks). Quantitative parameters of affinity interactions between macromolecules were established using frontal analysis at different flow rates.


Subject(s)
Chromatography, Affinity/methods , Chromatography, High Pressure Liquid/methods , Poly A/chemistry , Poly U/chemistry , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...