Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 269(7): 1799-805, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11952781

ABSTRACT

Human cytochrome P4501A1 (CYP1A1) is one of the key enzymes in the bioactivation of environmental pollutants such as benzo[a]pyrene (B[a]P) and other polycyclic aromatic hydrocarbons. To evaluate the effect of membrane properties and distinct phospholipids on the activity of human CYP1A1 purified insect cell-expressed human CYP1A1 and of human NADPH-P450 reductase were reconstituted into phospholipid vesicle membranes. Conversion rates of up to 36 pmol x min(-1) x pmol(-1) CYP1A1 of the enantiomeric promutagens (-)- and (+)-trans-7,8-dihydroxy-7,8-dihydro-B[a]P (7,8-diol) to the genotoxic diolepoxides were achieved. The highest rates were obtained when negatively charged lipids such as phosphatidylserine and phosphatidylinositol and/or nonbilayer phospholipids such as phosphatidylethanolamine were present in the membrane together with neutral lipids. Both Vmax and Km values were changed. This suggests a rather complex mechanism of stimulation which might include altered substrate binding as well as more effective interaction between CYP1A1 and NADPH-P450 reductase. Furthermore, the ratio of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (DE2) to r-7,t-8-dihydroxy-c-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (DE1) formed from (-)-7,8-diol was significantly increased by the introduction of anionic lipids, but not by that of nonbilayer lipids. Thus, charged lipids affect the stereoselectivity of the epoxidation by leading to the formation of a larger amount of the ultimate mutagen DE2 than of DE1, which is far less carcinogenic. These data suggest that membrane properties such as negative charge and nonbilayer phase propensity are important for the efficiency and selectivity of enzymatic function of human CYP1A1.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Dihydroxydihydrobenzopyrenes/metabolism , Epoxy Compounds/metabolism , Membranes, Artificial , Animals , Humans , Phospholipids/metabolism , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...