Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38878275

ABSTRACT

Genes regulating body fat are shared with high fidelity by mice and humans, indicating that mouse knockout (KO) phenotyping might identify valuable antiobesity drug targets. Male Mrs2 magnesium transporter (Mrs2) KO mice were recently reported as thin when fed a high-fat diet (HFD). They also exhibited increased energy expenditure (EE)/body weight and had beiged adipocytes that, along with isolated hepatocytes, demonstrated increased oxygen consumption, suggesting that increased EE drove the thin phenotype. Here we provide our data on these and additional assays in Mrs2 KO mice. We generated Mrs2 KO mice by homologous recombination. HFD-fed male and female Mrs2 KO mice had significantly less body fat, measured by quantitative magnetic resonance, than wild-type (WT) littermates. HFD-fed Mrs2 KO mice did not demonstrate increased EE by indirect calorimetry and could not maintain body temperature at 4 °C, consistent with their decreased brown adipose tissue stores but despite increased beige white adipose tissue. Instead, when provided a choice between HFD and low-fat diet (LFD), Mrs2 KO mice showed a significant 15% decrease in total energy intake resulting from significantly lower HFD intake that offset numerically increased LFD intake. Food restriction studies performed using WT mice suggested that this decrease in energy intake could explain the loss of body fat. Oral glucose tolerance test studies revealed significantly improved insulin sensitivity in Mrs2 KO mice. We conclude that HFD-fed Mrs2 KO mice are thin with improved insulin sensitivity, and that this favorable metabolic phenotype is driven by hypophagia. Further evaluation is warranted to determine the suitability of MRS2 as a drug target for antiobesity therapeutics.


Subject(s)
Diet, High-Fat , Energy Metabolism , Mice, Knockout , Animals , Diet, High-Fat/adverse effects , Male , Female , Mice , Energy Metabolism/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Mice, Inbred C57BL , Body Weight , Adipose Tissue/metabolism
2.
Diabetes Metab Syndr Obes ; 15: 45-58, 2022.
Article in English | MEDLINE | ID: mdl-35023939

ABSTRACT

PURPOSE: Humans with haploinsufficiency of GPR75, an orphan GPCR, are thin. Gpr75 knockout (KO) mice are also thin with improved glucose homeostasis. We wanted to confirm these findings in Gpr75 KO mice and determine whether decreased energy intake and/or increased energy expenditure contributed to the thin phenotype. METHODS: Gpr75 KO mice were generated by homologous recombination. All studies compared female and male Gpr75 KO mice to their wild type (WT) littermates. Body composition was measured by DXA and QMR technologies. Glucose homeostasis was evaluated by measuring glucose and insulin levels during oral glucose tolerance tests (OGTTs). Food intake was measured in group-housed mice. In singly housed mice, energy expenditure was measured in Oxymax indirect calorimetry chambers, and locomotor activity was measured in Oxymax and Photobeam Activity System chambers. RESULTS: In all 12 cohorts of adult female or male mice, Gpr75 KO mice had less body fat; pooled data showed that, compared to WT littermates (n = 103), Gpr75 KO mice (n = 118) had 49% less body fat and 4% less LBM (P < 0.001 for each). KO mice also had 8% less body fat at weaning (P < 0.05), and during the month after weaning as the thin phenotype became more exaggerated, Gpr75 KO mice ate significantly less than, but had energy expenditure and activity levels comparable to, their WT littermates. During OGTTs, Gpr75 KO mice showed improved glucose tolerance (glucose AUC 23% lower in females, P < 0.05, and 26% lower in males, P < 0.001), accompanied by significantly decreased insulin levels and significantly increased insulin sensitivity indices. CONCLUSION: Gpr75 KO mice are thin at weaning, are hypophagic as the thin phenotype becomes more exaggerated, and exhibit improved glucose tolerance and insulin sensitivity as healthy-appearing adults. These results suggest that inhibiting GPR75 in obese humans may safely decrease energy intake and body fat while improving glucose tolerance and insulin sensitivity.

3.
Diabetes Metab Syndr Obes ; 14: 3753-3785, 2021.
Article in English | MEDLINE | ID: mdl-34483672

ABSTRACT

PURPOSE: Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS: KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION: These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.

4.
Diabetes Metab Syndr Obes ; 13: 2641-2652, 2020.
Article in English | MEDLINE | ID: mdl-32801815

ABSTRACT

PURPOSE: In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS: The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS: Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION: Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.

5.
Endocrinology ; 157(12): 4534-4541, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27754787

ABSTRACT

Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet ß-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to ß-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function.


Subject(s)
Cation Transport Proteins/metabolism , Glucose/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Animals , Body Weight/genetics , Cation Transport Proteins/genetics , Female , Glucagon-Secreting Cells/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Male , Mice , Mice, Knockout , Sex Factors , Zinc Transporter 8
6.
Diabetes Metab Syndr Obes ; 9: 185-99, 2016.
Article in English | MEDLINE | ID: mdl-27382320

ABSTRACT

Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease.

7.
Pathog Dis ; 74(3)2016 Apr.
Article in English | MEDLINE | ID: mdl-26733499

ABSTRACT

To determine if Chlamydia muridarum, or other chlamydiae, are enzootic in rodents, we probed a serum bank of wild Peromyscus spp. mice for immunoglobulin G-antibody reactivity to ultraviolet light-inactivated C. muridarum elementary bodies (EBs) using an enzyme-linked immunoassay. Applying a cut-off for a positive reaction of OD(405) nm = 0.1 at a 1:20 dilution, we found titratable antibody reactivity in 190 of 247 specimens surveyed (77%, mean OD(405) = 0.33 ± 0.26, range = 0.11-1.81, median = 0.25). In addition, serum samples were obtained from a colony of specific pathogen-free Peromyscus spp. maintained at the University of South Carolina and six of 12 samples were reactive (50%, mean OD(405) = 0.19 +/- 0.08, range = 0.1-0.32, median = 0.18). Lastly, 40 additional wild Peromyscus spp. were captured in a disparate region of Midwestern USA and 22 serum specimens were reactive (55%, mean OD(405) = 0.22 +/- 0.11, range = 0.1-0.48, median = 0.2). Specificity of selected reactive sera for chlamydial antigen was confirmed on Western blot using resolved purified EBs as the detecting antigen. From tissues removed from several mice at necropsy, the gene for chlamydial 16S ribosomal ribonucleic acid (rRNA) was amplified by polymerase chain reaction (PCR). Positive samples of 16S rRNA were subjected to additional PCR for the major outer membrane protein gene (ompA). The amplicons of three select ompA positive samples were sequenced with ≥99% homology with C. muridarum. Our findings indicate that chlamydial infection is enzootic for Peromyscus spp., and that C. muridarum, or a closely related species or strain, is likely the agent in the tested rodent species.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/genetics , Chlamydia Infections/epidemiology , Chlamydia Infections/immunology , Chlamydia muridarum/immunology , Immunoglobulin G/blood , Animals , Antibodies, Bacterial/immunology , Base Sequence , Chlamydia Infections/microbiology , Chlamydia muridarum/genetics , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/immunology , Iowa/epidemiology , Peromyscus , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Nat Commun ; 6: 6228, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25736573

ABSTRACT

The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells' functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1(-/-) mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1(-/-) mice. RPE-rich eyecup cultures from AdipoR1(-/-) reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity.


Subject(s)
Docosahexaenoic Acids/metabolism , Photoreceptor Cells, Vertebrate/physiology , Receptors, Adiponectin/metabolism , Retinal Pigment Epithelium/physiology , Animals , Electroretinography , In Situ Hybridization , Mice , Mice, Knockout , Phosphatidylcholines/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Retinal Pigment Epithelium/metabolism
10.
PLoS One ; 9(5): e98151, 2014.
Article in English | MEDLINE | ID: mdl-24852423

ABSTRACT

Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.


Subject(s)
Autoimmunity , Hepatocyte Growth Factor/genetics , Proto-Oncogene Proteins/genetics , T-Lymphocytes/immunology , Animals , Arthritis, Rheumatoid/immunology , Base Sequence , DNA Primers , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Reverse Transcriptase Polymerase Chain Reaction
11.
Am J Physiol Renal Physiol ; 306(2): F188-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24226519

ABSTRACT

In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40-50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the maximum response doubled in Sglt1 knockout (Sglt1-/-) mice. Treatment in diet with the SGLT2-I for 3 wk maintained 1.5- to 2-fold higher urine glucose/creatinine ratios in Sglt1-/- vs. WT mice, associated with a temporarily greater reduction in blood glucose in Sglt1-/- vs. WT after 24 h (-33 vs. -11%). Subsequent inulin clearance studies under anesthesia revealed free plasma concentrations of the SGLT2-I (corresponding to early proximal concentration) close to the reported IC50 for SGLT2 in mice, which were associated with FGR of 64 ± 2% in WT and 17 ± 2% in Sglt1-/-. Additional intraperitoneal application of the SGLT2-I (maximum effective dose in metabolic cages) increased free plasma concentrations ∼10-fold and reduced FGR to 44 ± 3% in WT and to -1 ± 3% in Sglt1-/-. The absence of renal glucose reabsorption was confirmed in male and female Sglt1/Sglt2 double knockout mice. In conclusion, SGLT2 and SGLT1 account for renal glucose reabsorption in euglycemia, with 97 and 3% being reabsorbed by SGLT2 and SGLT1, respectively. When SGLT2 is fully inhibited by SGLT2-I, the increase in SGLT1-mediated glucose reabsorption explains why only 50-60% of filtered glucose is excreted.


Subject(s)
Glucose/metabolism , Kidney/metabolism , Sodium-Glucose Transporter 1/physiology , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2/genetics , Animals , Benzhydryl Compounds/pharmacology , Biological Transport, Active/physiology , Blood Glucose/physiology , Dose-Response Relationship, Drug , Drinking/physiology , Eating/physiology , Female , Glucosides/pharmacology , Glycosuria/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Knockout , Sodium-Glucose Transporter 1/genetics , Urodynamics/drug effects , Urodynamics/genetics
12.
Invest Ophthalmol Vis Sci ; 54(6): 4072-80, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23696608

ABSTRACT

PURPOSE: Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. METHODS: Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2⁺/⁻ mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. RESULTS: Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2⁺/⁻ mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2⁺/⁻ mice exhibit significantly less retinal degeneration than wild-type mice. CONCLUSIONS: This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury.


Subject(s)
Disease Models, Animal , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Reperfusion Injury/prevention & control , Retina/drug effects , Retinal Degeneration/prevention & control , Animals , Electroretinography , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Hydroxamic Acids/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/enzymology , Retina/metabolism , Retina/physiology , Retinal Degeneration/enzymology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/physiology
13.
Am J Physiol Renal Physiol ; 304(2): F156-67, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23152292

ABSTRACT

The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2(-/-)) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2(-/-) vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Hyperglycemia/metabolism , Kidney/growth & development , Sodium-Glucose Transporter 2/metabolism , Animals , Blood Glucose , Diabetes Mellitus, Experimental/blood , Diabetic Nephropathies/genetics , Glomerular Filtration Rate , Hyperglycemia/blood , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sodium-Glucose Transporter 2/genetics
14.
Am J Physiol Endocrinol Metab ; 304(2): E117-30, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23149623

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.


Subject(s)
Blood Glucose/metabolism , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics , Animals , Blood Glucose/genetics , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/urine , Female , Glucagon-Like Peptide 1/pharmacology , Glucose Tolerance Test , Glycosuria/genetics , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sodium-Glucose Transporter 1/physiology , Sodium-Glucose Transporter 2/physiology , Streptozocin
15.
PLoS One ; 7(9): e45500, 2012.
Article in English | MEDLINE | ID: mdl-23029056

ABSTRACT

Receptor tyrosine phosphatase gamma (PTPRG, or RPTPγ) is a mammalian receptor-like tyrosine phosphatase which is highly expressed in the nervous system as well as other tissues. Its function and biochemical characteristics remain largely unknown. We created a knockdown (KD) line of this gene in mouse by retroviral insertion that led to 98-99% reduction of RPTPγ gene expression. The knockdown mice displayed antidepressive-like behaviors in the tail-suspension test, confirming observations by Lamprianou et al. 2006. We investigated this phenotype in detail using multiple behavioral assays. To see if the antidepressive-like phenotype was due to the loss of phosphatase activity, we made a knock-in (KI) mouse in which a mutant, RPTPγ C1060S, replaced the wild type. We showed that human wild type RPTPγ protein, expressed and purified, demonstrated tyrosine phosphatase activity, and that the RPTPγ C1060S mutant was completely inactive. Phenotypic analysis showed that the KI mice also displayed some antidepressive-like phenotype. These results lead to a hypothesis that an RPTPγ inhibitor could be a potential treatment for human depressive disorders. In an effort to identify a natural substrate of RPTPγ for use in an assay for identifying inhibitors, "substrate trapping" mutants (C1060S, or D1028A) were studied in binding assays. Expressed in HEK293 cells, these mutant RPTPγs retained a phosphorylated tyrosine residue, whereas similarly expressed wild type RPTPγ did not. This suggested that wild type RPTPγ might auto-dephosphorylate which was confirmed by an in vitro dephosphorylation experiment. Using truncation and mutagenesis studies, we mapped the auto-dephosphorylation to the Y1307 residue in the D2 domain. This novel discovery provides a potential natural substrate peptide for drug screening assays, and also reveals a potential functional regulatory site for RPTPγ. Additional investigation of RPTPγ activity and regulation may lead to a better understanding of the biochemical underpinnings of human depression.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Animals , Female , Gene Knockout Techniques , Gene Order , Gene Targeting , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Motor Activity , Mutation , Phenotype , Phosphorylation , Physical Exertion , Substrate Specificity
16.
Obesity (Silver Spring) ; 19(5): 1010-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21127480

ABSTRACT

The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Hyperphagia/metabolism , Obesity/metabolism , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Eating/genetics , Leptin/metabolism , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics
17.
J Am Soc Nephrol ; 22(1): 104-12, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20616166

ABSTRACT

Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.


Subject(s)
Glucose/metabolism , Kidney Tubules, Proximal/metabolism , Sodium-Glucose Transporter 2/metabolism , Absorption/physiology , Aldosterone/blood , Animals , Disease Models, Animal , Mice , Mice, Knockout , Microvilli/metabolism , RNA, Messenger/metabolism , Renin/blood , Sodium-Glucose Transporter 2/genetics
18.
Nat Biotechnol ; 28(7): 749-55, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20562862

ABSTRACT

Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.


Subject(s)
Membrane Proteins/genetics , Animals , Mice , Mice, Knockout
19.
Vector Borne Zoonotic Dis ; 10(2): 207-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19402765

ABSTRACT

Fox squirrels (Sciurus niger) (five of eight) were infected with West Nile virus (WNV) when challenged by the oral route with 10(2.3) or 10(3.4) plaque forming units (PFU). The mean maximum serum WNV titer of infected fox squirrels was 10(5.1) PFU/mL and ranged from 10(4.6) to 10(5.6) PFU/mL. These levels of viremia are infectious for several mosquito vectors of WNV. This virus was also isolated from swabs of the oral and rectal cavities, and urine swabs between day 5 and 9 postexposure (p.e.) in amounts as high as 10(2.0), 10(2.8), and 10(2) PFU, respectively. WNV RNA was detected in salivary gland and/or kidney tissue of three squirrels between day 65 and 72 p.e. in the presence of WNV neutralizing antibody, suggesting that long-term persistent infection occurs in fox squirrels. These observations justify further studies to determine if nonarthropod transmission and long-term persistent infection occur naturally in fox squirrels and contribute to trans-seasonal maintenance of WNV.


Subject(s)
Disease Susceptibility/veterinary , Sciuridae , West Nile Fever/veterinary , West Nile virus/physiology , Animals , Kidney/virology , RNA, Viral/isolation & purification , Salivary Glands/virology , Viremia , West Nile Fever/blood , West Nile Fever/mortality , West Nile Fever/virology
20.
J Wildl Dis ; 45(4): 1163-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19901390

ABSTRACT

Surveillance for evidence of West Nile virus (WNV) infection in small- and medium-sized wild mammals was conducted in Iowa, USA, from May 2005 to June 2007. Sera were collected from 325 mammals belonging to nine species and tested for antibodies to WNV and other flaviviruses by epitope-blocking enzyme-linked immunosorbent assay (ELISA). All sera that had antibodies to flaviviruses by blocking ELISA were further examined by plaque reduction neutralization test (PRNT). Thirteen mammals were seropositive for WNV by PRNT, including 10 raccoons (Procyon lotor). The seroprevalence for WNV in raccoons was 34%. Although a moderately high seroprevalence for WNV has been detected in raccoons in other surveillance studies in the United States, this has not been reported previously in Iowa or most bordering states. Together, these data indicate that raccoons are exposed to WNV at high rates throughout the United States. Two Virginia opossums (Didelphis virginiana) and one fox squirrel (Sciurus niger) were also seropositive for WNV. Nineteen mammals had antibodies to an undetermined flavivirus(es). In summary, we provide serologic evidence that raccoons in Iowa are commonly exposed to WNV.


Subject(s)
Antibodies, Viral/blood , Raccoons/virology , West Nile Fever/veterinary , West Nile virus/immunology , Animals , Animals, Wild/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Iowa/epidemiology , Male , Neutralization Tests/veterinary , Opossums/virology , Sciuridae/virology , Sentinel Surveillance/veterinary , Seroepidemiologic Studies , West Nile Fever/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...