Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 15: 658244, 2021.
Article in English | MEDLINE | ID: mdl-33935654

ABSTRACT

Striatal dopamine transporters (DAT) powerfully regulate dopamine signaling, and can contribute risk to degeneration in Parkinson's disease (PD). DATs can interact with the neuronal protein α-synuclein, which is associated with the etiology and molecular pathology of idiopathic and familial PD. Here, we tested whether DAT function in governing dopamine (DA) uptake and release is modified in a human-α-synuclein-overexpressing (SNCA-OVX) transgenic mouse model of early PD. Using fast-scan cyclic voltammetry (FCV) in ex vivo acute striatal slices to detect DA release, and biochemical assays, we show that several aspects of DAT function are promoted in SNCA-OVX mice. Compared to background control α-synuclein-null mice (Snca-null), the SNCA-OVX mice have elevated DA uptake rates, and more pronounced effects of DAT inhibitors on evoked extracellular DA concentrations ([DA]o) and on short-term plasticity (STP) in DA release, indicating DATs play a greater role in limiting DA release and in driving STP. We found that DAT membrane levels and radioligand binding sites correlated with α-synuclein level. Furthermore, DAT function in Snca-null and SNCA-OVX mice could also be promoted by applying cholesterol, and using Tof-SIMS we found genotype-differences in striatal lipids, with lower striatal cholesterol in SNCA-OVX mice. An inhibitor of cholesterol efflux transporter ABCA1 or a cholesterol chelator in SNCA-OVX mice reduced the effects of DAT-inhibitors on evoked [DA]o. Together these data indicate that human α-synuclein in a mouse model of PD promotes striatal DAT function, in a manner supported by extracellular cholesterol, suggesting converging biology of α-synuclein and cholesterol that regulates DAT function and could impact DA function and PD pathophysiology.

2.
Nat Commun ; 10(1): 4263, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537790

ABSTRACT

Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short-term plasticity of dopamine release, using fast-scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short-term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+-gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short-term plasticity, governing the balance between release-dependent and independent mechanisms that also show region-specific gating.


Subject(s)
Axons/metabolism , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Animals , Biological Transport , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology
3.
ACS Chem Neurosci ; 10(8): 3419-3426, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31361457

ABSTRACT

The calcium-binding protein calbindin-D28K, or calb1, is expressed at higher levels by dopamine (DA) neurons originating in the ventral tegmental area (VTA) than in the adjacent substantia nigra pars compacta (SNc). Calb1 has received attention for a potential role in neuroprotection in Parkinson's disease. The underlying physiological roles for calb1 are incompletely understood. We used cre-loxP technology to knock down calb1 in mouse DA neurons to test whether calb1 governs axonal release of DA in the striatum, detected using fast-scan cyclic voltammetry ex vivo. In the ventral but not dorsal striatum, calb1 knockdown elevated DA release and modified the spatiotemporal coupling of Ca2+ entry to DA release. Furthermore, calb1 knockdown enhanced DA uptake but attenuated the impact of DA transporter (DAT) inhibition by cocaine on underlying DA release. These data reveal that calb1 acts through a range of mechanisms underpinning both DA release and uptake to limit DA transmission in the ventral but not dorsal striatum.


Subject(s)
Calbindin 1/metabolism , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Animals , Calcium/metabolism , Dopaminergic Neurons/metabolism , Gene Knockdown Techniques , Mice
4.
Neurobiol Dis ; 82: 262-268, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117304

ABSTRACT

Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Parkinsonian Disorders/metabolism , Receptors, Nicotinic/metabolism , Synaptic Transmission/physiology , Animals , Cocaine/pharmacology , Corpus Striatum/drug effects , Dopamine Uptake Inhibitors/pharmacology , Male , Mice, Inbred C57BL , Oxidopamine , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Synaptic Transmission/drug effects , Tissue Culture Techniques
5.
J Physiol ; 593(4): 929-46, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25533038

ABSTRACT

KEY POINTS: The voltage-gated Ca(2+) channels (VGCCs) that catalyse striatal dopamine transmission are critical to dopamine function and might prime subpopulations of neurons for parkinsonian degeneration. However, the VGCCs that operate on mesostriatal axons are incompletely defined; previous studies encompassed channels on striatal cholinergic interneurons that strongly influence dopamine transmission. We define that multiple types of axonal VGCCs operate that extend beyond classic presynaptic N/P/Q channels to include T- and L-types. We reveal differences in VGCC function between mouse axon types that in humans are vulnerable versus resistant to Parkinson's disease. We show for the first time that this is underpinned by different sensitivity of dopamine transmission to extracellular Ca(2+) and by different spatiotemporal intracellular Ca(2+) microdomains. These data define key principles of how Ca(2+) and VGCCs govern dopamine transmission in the healthy brain and reveal differences between neuron types that might contribute to vulnerability in disease. ABSTRACT: The axonal voltage-gated Ca(2+) channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca(2+)-dependent relationships between initial release probability and short-term plasticity. Ca(2+) concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca(2+) sensitivity of DA transmission from CPu axons. Functions for 'silent' L- and T-channels in NAc could be unmasked by elevating extracellular [Ca(2+)]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca(2+) transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca(2+) in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca(2+) handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration.


Subject(s)
Calcium Channels/physiology , Corpus Striatum/physiology , Dopamine/physiology , Animals , Axons/physiology , Calcium/physiology , In Vitro Techniques , Male , Mice, Inbred C57BL
6.
Neuron ; 75(1): 58-64, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22794260

ABSTRACT

Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.


Subject(s)
Action Potentials/physiology , Cholinergic Neurons/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Interneurons/metabolism , Animals , Electric Stimulation/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques
7.
PLoS One ; 7(5): e36397, 2012.
Article in English | MEDLINE | ID: mdl-22570709

ABSTRACT

Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn), cause familial Parkinson's disease (PD). Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA) signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs) were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Synaptic Transmission/genetics , alpha-Synuclein/genetics , Amino Acid Substitution , Animals , Female , Gene Expression , Humans , Mice , Mice, Transgenic , Mutation , alpha-Synuclein/metabolism
8.
PLoS One ; 5(10): e13652, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-21048974

ABSTRACT

The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the serotoninergic system: treatment with drugs (such as the SSRI fluoxetine) markedly stimulates mitosis in the progenitor cells of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a) on the labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These experiments show that (i) Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus. The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a) depends upon Trk receptor activation, since it was prevented by icv infusion of K252a. (ii) These receptors are required for both the first 7 days of fluoxetine action, during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and have both clinical and experimental interest.


Subject(s)
Brain-Derived Neurotrophic Factor/physiology , Cyclic AMP Response Element-Binding Protein/physiology , Dentate Gyrus/drug effects , Fluoxetine/pharmacology , Mitosis/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Stem Cells/drug effects , Wnt Proteins/physiology , Animals , Brain-Derived Neurotrophic Factor/genetics , Carbazoles/pharmacology , Dentate Gyrus/cytology , Immunohistochemistry , In Situ Hybridization , Indole Alkaloids/pharmacology , RNA, Messenger/genetics , Rats , Stem Cells/cytology , Wnt3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...