Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Allergy ; 3: 942699, 2022.
Article in English | MEDLINE | ID: mdl-35966226

ABSTRACT

Introduction: Neutrophil and eosinophil activation and its relation to disease severity has been understudied in primary care patients with COVID-19. In this study, we investigated whether the neutrophil and eosinophil compartment were affected in primary care patients with COVID-19. Methods: COVID-19 patients, aged ≥ 40 years with cardiovascular comorbidity presenting to the general practitioner with substantial symptoms, partaking in the COVIDSat@Home study between January and April 2021, were included. Blood was drawn during and 3 to 6 months after active COVID-19 disease and analyzed by automated flow cytometry, before and after stimulation with a formyl-peptide (fNLF). Mature neutrophil and eosinophil markers at both time points were compared to healthy controls. A questionnaire was conducted on disease symptoms during and 3 to 6 months after COVID-19 disease. Results: The blood of 18 COVID-19 patients and 34 healthy controls was analyzed. During active COVID-19 disease, neutrophils showed reduced CD10 (p = 0.0360), increased CD11b (p = 0.0002) and decreased CD62L expression (p < 0.0001) compared to healthy controls. During active COVID-19 disease, fNLF stimulated neutrophils showed decreased CD10 levels (p < 0.0001). Three to six months after COVID-19 disease, unstimulated neutrophils showed lowered CD62L expression (p = 0.0003) and stimulated neutrophils had decreased CD10 expression (p = 0.0483) compared to healthy controls. Both (un)stimulated CD10 levels increased 3 to 6 months after active disease (p = 0.0120 and p < 0.0001, respectively) compared to during active disease. Eosinophil blood counts were reduced during active COVID-19 disease and increased 3 to 6 months after infection (p < 0.0001). During active COVID-19, eosinophils showed increased unstimulated CD11b (p = 0.0139) and decreased (un)stimulated CD62L expression (p = 0.0036 and p = 0.0156, respectively) compared to healthy controls. Three to six months after COVID-19 disease, (un)stimulated eosinophil CD62L expression was decreased (p = 0.0148 and p = 0.0063, respectively) and the percentage of CD11bbright cells was increased (p = 0.0083 and p = 0.0307, respectively) compared to healthy controls. Conclusion: Automated flow cytometry analysis reveals specific mature neutrophil and eosinophil activation patterns in primary care patients with COVID-19 disease, during and 3 to 6 months after active disease. This suggests that the neutrophil and eosinophil compartment are long-term affected by COVID-19 in primary care patients. This indicates that these compartments may be involved in the pathogenesis of long COVID.

2.
Clin Microbiol Infect ; 23(1): 46.e1-46.e7, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27596534

ABSTRACT

OBJECTIVES: Patients can acquire extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae during hospitalization, and colonized patients may transmit these bacteria after discharge, most likely to household contacts. In this study, ESBL transmission was quantified in households. METHODS: Faecal samples were longitudinally collected from hospitalized patients colonized with ESBL-producing bacteria and from their household members during hospitalization of the index patient and at 3, 6, 12 and 18 months. A mathematical household model was developed, which allowed for person-to-person transmission, acquisition from other sources (background transmission), and losing carriage. Next, a deterministic population model with a household structure was created, informed by parameter values found in the household model. RESULTS: In all, 74 index patients and 84 household members were included. In more than half of the household members ESBL-producing bacteria were demonstrated at some time during follow up. Person-to-person transmission occurred at a rate of 0.0053/colonized person/day (0.0025-0.011), background transmission at 0.00015/day (95% CI 0.00002-0.00039), and decolonization at 0.0026/day (0.0016-0.0040) for index patients and 0.0090/day (0.0046-0.018) for household members. The estimated probability of transmission from an index patient to a household contact was 67% and 37% vice versa. CONCLUSION: There is frequent transmission of ESBL-producing bacteria in households, which may contribute to the observed endemicity of ESBL carriage in the Netherlands. However, the population model suggests that there is not a single dominant acquisition route in the community.


Subject(s)
Contact Tracing/methods , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Enterobacteriaceae/enzymology , Family Characteristics , beta-Lactamases/metabolism , Adult , Carrier State , Child, Preschool , Female , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Enzymologic/physiology , Humans , Male , Middle Aged
3.
Clin Microbiol Infect ; 21(2): 141-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25658554

ABSTRACT

The prevalence of patients colonized with extended-spectrum beta-lactamase (ESBL)-producing bacteria increases, especially in long-term-care facilities (LTCFs). Identification of ESBL carriers at hospital admission is relevant for infection control measures and antibiotic therapy for nosocomial infections. We aimed to develop a prediction rule for ESBL carriage at hospital admission for patients admitted from home and LTCFs, and to quantify incidences of nosocomial infections caused by ESBL-producing bacteria. The ESBL-carrier status was determined of patients admitted from LTCFs and from home settings in four hospitals in the Netherlands using perianal swabs obtained within 48 hours of admission. Risk factors for ESBL carriage were assessed. Infections caused by ESBL-producing bacteria were identified retrospectively. Among 1351 patients, 111 (8.2%) were ESBL carriers at admission: 50/579 (8.6%) admitted from LTCFs and 61/772 (7.9%) from home settings (p 0.63). Previous ESBL carriage and previous hospital admission were risk factors for ESBL carriage in multivariable analysis. The area under the curve of the receiver operating characteristic curve of the model was 0.64 (95% CI 0.58-0.71). Presence of ≥1 risk factor (n = 803; 59%) had sensitivity of 72%. Incidences of nosocomial infections caused by ESBL-producing bacteria were 45.5/10,000 and 2.1/10,000 admission days for ESBL carriers and non-carriers, respectively (p <0.05). In conclusion, prevalence of ESBL carriage at hospital admission was 8.2%, and was comparable among patients admitted from LTCF and home. A clinically useful prediction rule for ESBL carriage at admission could not be developed. The absolute incidence of nosocomial infections by ESBL-producing bacteria was low, but higher among patients carrying ESBL-producing bacteria at the time of hospital admission.


Subject(s)
Bacteria/enzymology , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Carrier State/diagnosis , Decision Support Techniques , Diagnostic Tests, Routine/methods , beta-Lactamases/metabolism , Adult , Aged , Aged, 80 and over , Bacteria/isolation & purification , Bacteriological Techniques , Cross-Sectional Studies , Female , Hospitals , Humans , Male , Middle Aged , Netherlands , Patient Admission , Perineum/microbiology , Prevalence , Prospective Studies , Young Adult
4.
Eur J Clin Microbiol Infect Dis ; 32(8): 1091-5, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23519865

ABSTRACT

The concurrent presence of bla CTX-M-1 and bla TEM-52 genes on similar plasmids of Escherichia coli isolated from poultry, chicken meat and humans supports the occurrence of food-borne transmission of extended-spectrum beta-lactamase (ESBL) genes. ESBL-producing E. coli (ESBL-E. coli) are most frequently detected in hospitalised patients and are known to spread in healthcare settings. We hypothesised that poultry-associated (PA) ESBL genes are predominant in the community, where acquisition is fuelled by food contamination, whereas non-PA ESBL genes are predominant in hospitals, with acquisition fuelled by cross-transmission. Then, differences in antimicrobial selective pressure in hospitals and poultry would create differences in co-resistance between PA and non-PA ESBL-E. coli. We, therefore, determined the prevalence and co-resistance of PA and non-PA ESBL-E. coli in community-acquired and nosocomial urinary tract infections in humans and bla CTX-M-1 and bla TEM-52 isolates from poultry. A total of 134 human ESBL-E. coli urine isolates were included in this study. Isolates containing bla CTX-M-1 or bla TEM-52 were considered to be PA, with the remainder being non-PA. Also, 72 poultry ESBL-E. coli were included. Minimum inhibitory concentration (MIC) values were determined by broth microdilution. The prevalence of PA ESBL genes in isolates obtained in general practice and hospitals was 28 % versus 30 % (n.s.). Human PA ESBL-E. coli were more frequently susceptible to ciprofloxacin (51 % vs. 25 %; p = 0.0056), gentamicin (86 % vs. 63 %; p = .0.0082), tobramycin (91 % vs. 34 %; p = 0.0001) and amikacin (98 % vs. 67 %; p = 0.0001) compared to human non-PA ESBL-E. coli. PA ESBL-E. coli are not more prevalent in community acquired than nosocomial urine samples, but are more often susceptible to ciprofloxacin and aminoglycosides than non-PA ESBL-E. coli. This does not support the existence of different reservoirs of ESBL genes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , Meat/microbiology , Poultry/microbiology , beta-Lactamases/genetics , Animals , Bacterial Proteins/genetics , Chi-Square Distribution , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Humans , Microbial Sensitivity Tests , beta-Lactamases/metabolism
5.
Clin Microbiol Infect ; 19(1): 70-76, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22268620

ABSTRACT

This study aimed to evaluate the routine setting performance of a guideline for phenotypic detection of extended spectrum ß-lactamases (ESBLs) in Enterobacteriaceae, recommending ESBL confirmation with Etest or combination disc for isolates with a positive ESBL screen test (i.e. cefotaxime and/or ceftazidime MIC >1 mg/L or an automated system ESBL warning). Twenty laboratories submitted 443 Enterobacteriaceae with a positive ESBL screen test and their confirmation test result (74%Escherichia coli, 12%Enterobacter cloacae, 8%Klebsiella pneumoniae, 3%Proteus mirabilis, 2%Klebsiella oxytoca). Presence of ESBL genes was used as reference test. Accuracy of local phenotypic ESBL detection was 88%. The positive predictive value (PPV) of local screen tests was 70%, and differed per method (Vitek-2: 69%, Phoenix: 68%, disc diffusion: 92%), and species (95%K. pneumoniae-27%K. oxytoca). A low PPV (3%) was observed for isolates with automated system alarm but third-generation cephalosporin MICs <2 mg/L. Local ESBL confirmation had a PPV and negative predictive value (NPV) of 93% and 90%, respectively. Compared with centrally performed confirmation tests, 7% of local tests were misinterpreted. Combination disc was more specific than Etest (91% versus 61%). Confirmation tests were not reliable for P. mirabilis and K. oxytoca (PPV 33% and 38%, respectively, although NPVs were 100%). In conclusion, performance of Etests could be enhanced by education of technicians to improve their interpretation, by genotypic ESBL confirmation of P. mirabilis and K. oxytoca isolates with positive phenotypic ESBL confirmation, and by interpreting isolates with a positive ESBL alarm but an MIC <2 mg/L for cefotaxime and ceftazidime as ESBL-negative.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/classification , Enterobacteriaceae/enzymology , beta-Lactamases/analysis , Chi-Square Distribution , Drug Resistance, Bacterial , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Genotype , Guidelines as Topic , Humans , Microbial Sensitivity Tests , Phenotype , Practice Guidelines as Topic , Predictive Value of Tests , beta-Lactamases/genetics
6.
Clin Microbiol Infect ; 17(9): 1435-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21668574

ABSTRACT

Since the diagnostic characteristics of the Check-KPC ESBL microarray as a confirmation test on isolates obtained in a routine clinical setting have not been determined, we evaluated the microarray in a random selection of 346 clinical isolates with a positive ESBL screen test (MIC >1 mg/L for cefotaxime or ceftazidime or an ESBL alarm from the Phoenix or Vitek-2 expert system) collected from 31 clinical microbiology laboratories in the Netherlands in 2009. Using sequencing as the reference method the sensitivity of the microarray was 97% (237/245), the specificity 98% (97/99), the positive predictive value 99% (237/239) and the negative predictive value 92% (97/105).


Subject(s)
Bacterial Typing Techniques/methods , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Microarray Analysis/methods , Sequence Analysis, DNA/methods , beta-Lactamases/genetics , Bacterial Typing Techniques/standards , DNA, Bacterial/analysis , Enterobacteriaceae/classification , Enterobacteriaceae Infections/microbiology , Genes, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide/genetics , Predictive Value of Tests , Reproducibility of Results , beta-Lactam Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...