Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Nat Aging ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834884

ABSTRACT

Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.

2.
Inn Med (Heidelb) ; 2024 Jun 03.
Article in German | MEDLINE | ID: mdl-38831047

ABSTRACT

Elevated high-sensitivity cardiac troponin (hs-cTn) levels should be expected in about half of all patients with acute ischemic stroke (AIS). Since those patients are at risk of increased morbidity and mortality, often attributable to cardiac causes, an adequate work-up of the underlying etiology is required. This can only be achieved by a team of cardiologists and neurologists. Since underlying causes of hs-cTn elevation in AIS patients are diverse, often atypical or silent in their clinical presentation and some, such as an accompanying myocardial infarction, can be acutely life-threatening, the work-up should follow a standardized clinical algorithm. The vast majority of hs-cTn elevations are caused by non-ischemic myocardial injury associated with AIS. This work presents a practice-oriented approach to differential diagnosis with the update of the Mannheim clinical algorithm for acute ischemic stroke and troponin elevation.

3.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701193

ABSTRACT

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Subject(s)
B7 Antigens , Killer Cells, Natural , T-Lymphocytes , Humans , Killer Cells, Natural/immunology , Animals , Mice , B7 Antigens/immunology , T-Lymphocytes/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Lymphocyte Activation/immunology , Female , Esophageal Neoplasms/immunology
4.
Nat Commun ; 15(1): 4210, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806504

ABSTRACT

The chemokine CXCL12 promotes glioblastoma (GBM) recurrence after radiotherapy (RT) by facilitating vasculogenesis. Here we report outcomes of the dose-escalation part of GLORIA (NCT04121455), a phase I/II trial combining RT and the CXCL12-neutralizing aptamer olaptesed pegol (NOX-A12; 200/400/600 mg per week) in patients with incompletely resected, newly-diagnosed GBM lacking MGMT methylation. The primary endpoint was safety, secondary endpoints included maximum tolerable dose (MTD), recommended phase II dose (RP2D), NOX-A12 plasma levels, topography of recurrence, tumor vascularization, neurologic assessment in neuro-oncology (NANO), quality of life (QOL), median progression-free survival (PFS), 6-months PFS and overall survival (OS). Treatment was safe with no dose-limiting toxicities or treatment-related deaths. The MTD has not been reached and, thus, 600 mg per week of NOX-A12 was established as RP2D for the ongoing expansion part of the trial. With increasing NOX-A12 dose levels, a corresponding increase of NOX-A12 plasma levels was observed. Of ten patients enrolled, nine showed radiographic responses, four reached partial remission. All but one patient (90%) showed at best response reduced perfusion values in terms of relative cerebral blood volume (rCBV). The median PFS was 174 (range 58-260) days, 6-month PFS was 40.0% and the median OS 389 (144-562) days. In a post-hoc exploratory analysis of tumor tissue, higher frequency of CXCL12+ endothelial and glioma cells was significantly associated with longer PFS under NOX-A12. Our data imply safety of NOX-A12 and its efficacy signal warrants further investigation.


Subject(s)
Aptamers, Nucleotide , Brain Neoplasms , Chemokine CXCL12 , Glioblastoma , Humans , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Aptamers, Nucleotide/administration & dosage , Chemokine CXCL12/blood , Male , Female , Middle Aged , Aged , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy , Adult , Maximum Tolerated Dose , Quality of Life , Neoplasm Recurrence, Local
6.
Heliyon ; 10(6): e27486, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545149

ABSTRACT

Spontaneous intraoperative development of Mobitz II second-degree atrioventricular block is a rare event which requires decisive action on the part of anesthesiologists and anesthetists. Given that this arrhythmia can be fatal if not properly managed, it is imperative that every practitioner know how it should be managed. Currently, there is a lack of literature discussing what to expect when a patient develops this complication and what the best management strategies are. This case report describes the unexpected development of Mobitz II second-degree atrioventricular block in an elderly patient with no prior history of conduction abnormalities undergoing total hip arthroplasty and how it was managed during the perioperative period to avoid morbidity or mortality. It includes a proposed management algorithm as an easy to use guide in the management of similar clinical scenarios. While this algorithm should be familiar to anesthesiologists and experienced anesthetists, it can serve as a reference in critical situations, and may help in educating trainees.

7.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423052

ABSTRACT

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Subject(s)
Deep Learning , Glioblastoma , Humans , Artificial Intelligence , Biomarkers , Cohort Studies , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies
8.
Sci Adv ; 10(5): eadi9091, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306431

ABSTRACT

H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.


Subject(s)
Glioma , T-Lymphocytes , Humans , HLA-DR Antigens , Vaccination , Glioma/genetics , Epitopes
9.
Sci Adv ; 10(5): eadk3060, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306432

ABSTRACT

Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.


Subject(s)
Histocompatibility Antigens Class I , Receptors, Antigen, T-Cell , Humans , Ligands , Receptors, Antigen, T-Cell/metabolism , HLA Antigens , Histocompatibility Antigens Class II
10.
Case Rep Anesthesiol ; 2024: 1050279, 2024.
Article in English | MEDLINE | ID: mdl-38229914

ABSTRACT

Patients with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) are prone to hypoglycemia and clinical decompensation when metabolic demands of the body are not met. We present a pediatric patient with VLCADD who underwent a posterior spinal fusion for scoliosis requiring intraoperative neurophysiology monitoring. Challenges included minimization of perioperative metabolic stressors and careful selection of anesthetic agents since propofol-based total intravenous anesthesia (TIVA) was contraindicated due to its high fatty acid content. This case is unique due to the sequential use of inhaled anesthetics after TIVA to allow for a rapid wakeup and immediate postoperative physical exam. Additionally, intraoperative neuromonitoring in the setting of VLCADD has not been reported in the literature. With communication among anesthesia, surgery, and neuromonitoring teams before and during the operation, the patient successfully underwent a major surgery without complications. This trial is registered with NCT03808077.

11.
Clin Cancer Res ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38295147

ABSTRACT

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing (NGS) of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single nucleotide variants (SNVs), and small insertions/ deletions (indels) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), non-malignant (n = 17) and non-diagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/ or cancer specific alterations in 75.0 % (n = 24) of glioblastoma and 52.6 % (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26-48 %) and SNVs at pre-defined gene loci (44 %), followed by SNVs/ indels identified via uninformed variant calling (8-14 %). A molecular-guided tumor classification was possible for 23.5 % (n = 4) of non-diagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma.

12.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715782

ABSTRACT

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Subject(s)
Cancer Vaccines , Glioblastoma , Mice , Animals , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Cancer Vaccines/therapeutic use , Vaccines, Subunit , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm/genetics , Cell Adhesion Molecules, Neuronal
13.
Commun Med (Lond) ; 3(1): 186, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110626

ABSTRACT

BACKGROUND: Concurrent malignant brain tumors in patients with multiple sclerosis (MS) constitute a rare but paradigmatic phenomenon for studying neuroimmunological mechanisms from both molecular and clinical perspectives. METHODS: A multicenter cohort of 26 patients diagnosed with both primary brain tumors and multiple sclerosis was studied for disease localization, tumor treatment-related MS activity, and molecular characteristics specific for diffuse glioma in MS patients. RESULTS: MS neither predisposes nor protects from the development of gliomas. Patients with glioblastoma WHO grade 4 without isocitratdehydrogenase (IDH) mutations have a longstanding history of MS, whereas patients diagnosed with IDH-mutant astrocytoma WHO grade 2 receive multiple sclerosis diagnosis mostly at the same time or later. Concurrent MS is associated with a lesser extent of tumor resection and a worse prognosis in IDH-mutant glioma patients (PFS 32 vs. 64 months, p = 0.0206). When assessing tumor-intrinsic differences no distinct subgroup-defining methylation pattern is identified in gliomas of MS patients compared to other glioma samples. However, differential methylation of immune-related genetic loci including human leukocyte antigen locus on 6p21 and interleukin locus on 5q31 is found in MS patients vs. matched non-MS patients. In line, inflammatory disease activity increases in 42% of multiple sclerosis patients after brain tumor radiotherapy suggesting a susceptibility of multiple sclerosis brain tissue to pro-inflammatory stimuli such as ionizing radiation. CONCLUSIONS: Concurrent low-grade gliomas should be considered in multiple sclerosis patients with slowly progressive, expansive T2/FLAIR lesions. Our findings of typically reduced extent of resection in MS patients and increased MS activity after radiation may inform future treatment decisions.


Brain tumors such as gliomas can evade attacks by the immune system. In contrast, some diseases of the central nervous system such as multiple sclerosis (MS) are caused by an overactive immune system. Our study looks at a cohort of rare patients with both malignant glioma and concurrent MS and examines how each disease and their treatments affect each other. Our data suggest that even in patients with known MS, if medical imaging findings are unusual, a concurrent brain tumor should be excluded at an early stage. Radiotherapy, as is the standard of care for malignant brain tumors, may worsen the inflammatory disease activity in MS patients, which may be associated with certain genetic risk factors. Our findings may help to inform treatment of patients with brain tumors and MS.

14.
Nat Commun ; 14(1): 7363, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963876

ABSTRACT

Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Mice , Animals , T-Lymphocytes, Regulatory , Tryptophan , Colitis/chemically induced , Colon , Receptors, Peptide , Receptors, G-Protein-Coupled/genetics
15.
Theranostics ; 13(15): 5170-5182, 2023.
Article in English | MEDLINE | ID: mdl-37908732

ABSTRACT

Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.


Subject(s)
Glioma , T-Lymphocytes , Humans , Animals , Mice , Glioma/diagnostic imaging , Glioma/therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy , Tumor Microenvironment
16.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37963637

ABSTRACT

BACKGROUND: The metabolism of tryptophan to kynurenines (KYN) by indoleamine-2,3-dioxygenase or tryptophan-2,3-dioxygenase is a key pathway of constitutive and adaptive tumor immune resistance. The immunosuppressive effects of KYN in the tumor microenvironment are predominantly mediated by the aryl hydrocarbon receptor (AhR), a cytosolic transcription factor that broadly suppresses immune cell function. Inhibition of AhR thus offers an antitumor therapy opportunity via restoration of immune system functions. METHODS: The expression of AhR was evaluated in tissue microarrays of head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC) and colorectal cancer (CRC). A structure class of inhibitors that block AhR activation by exogenous and endogenous ligands was identified, and further optimized, using a cellular screening cascade. The antagonistic properties of the selected AhR inhibitor candidate BAY 2416964 were determined using transactivation assays. Nuclear translocation, target engagement and the effect of BAY 2416964 on agonist-induced AhR activation were assessed in human and mouse cancer cells. The immunostimulatory properties on gene and cytokine expression were examined in human immune cell subsets. The in vivo efficacy of BAY 2416964 was tested in the syngeneic ovalbumin-expressing B16F10 melanoma model in mice. Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. The data were analyzed statistically using linear models. RESULTS: AhR expression was observed in tumor cells and tumor-infiltrating immune cells in HNSCC, NSCLC and CRC. BAY 2416964 potently and selectively inhibited AhR activation induced by either exogenous or endogenous AhR ligands. In vitro, BAY 2416964 restored immune cell function in human and mouse cells, and furthermore enhanced antigen-specific cytotoxic T cell responses and killing of tumor spheroids. In vivo, oral application with BAY 2416964 was well tolerated, induced a proinflammatory tumor microenvironment, and demonstrated antitumor efficacy in a syngeneic cancer model in mice. CONCLUSIONS: These findings identify AhR inhibition as a novel therapeutic approach to overcome immune resistance in various types of cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Dioxygenases , Head and Neck Neoplasms , Lung Neoplasms , Humans , Mice , Animals , Tryptophan , Receptors, Aryl Hydrocarbon/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Leukocytes, Mononuclear/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Lung Neoplasms/drug therapy , Kynurenine/metabolism , Immunotherapy , Immunologic Factors , Head and Neck Neoplasms/drug therapy , Tumor Microenvironment
17.
Cancer Cell ; 41(11): 1829-1834, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37863064

ABSTRACT

With the advances in immunogenomics, the majority of tumor-specific antigens were found to be recognized by T helper cells (THCs). This observation led to the development of long epitope vaccines in various cancers. Mechanistically, we are still gaining a deeper understanding of the mode of action of THCs as precision antitumor agonists. Here, we discuss the specific cellular mechanisms of THC functions in glioma immunology and contextualize current advances in anti-glioma vaccination exploiting THCs.


Subject(s)
Cancer Vaccines , Glioma , Humans , T-Lymphocytes, Helper-Inducer , Antigens, Neoplasm , Vaccination , Epitopes
18.
Ther Adv Neurol Disord ; 16: 17562864231180730, 2023.
Article in English | MEDLINE | ID: mdl-37780055

ABSTRACT

Background: While substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS), a high percentage of treated patients still show progression and persistent inflammatory activity. Autologous haematopoietic stem cell transplantation (AHSCT) aims at eliminating a pathogenic immune repertoire through intense short-term immunosuppression that enables subsequent regeneration of a new and healthy immune system to re-establish immune tolerance for a long period of time. A number of mostly open-label, uncontrolled studies conducted over the past 20 years collected about 4000 cases. They uniformly reported high efficacy of AHSCT in controlling MS inflammatory disease activity, more markedly beneficial in relapsing-remitting MS. Immunological studies provided evidence for qualitative immune resetting following AHSCT. These data and improved safety profiles of transplantation procedures spurred interest in using AHSCT as a treatment option for MS. Objective: To develop expert consensus recommendations on AHSCT in Germany and outline a registry study project. Methods: An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of virtual meetings. Results: We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS based on the Swiss criteria. Current data indicate that patients who are most likely to benefit from AHSCT have relapsing-remitting MS and are young, ambulatory and have high disease activity. Treatment data with AHSCT will be collected within the German REgistry Cohort of autologous haematopoietic stem CeLl trAnsplantation In MS (RECLAIM). Conclusion: Further clinical trials, including registry-based analyses, are urgently needed to better define the patient characteristics, efficacy and safety profile of AHSCT compared with other high-efficacy therapies and to optimally position it as a treatment option in different MS disease stages.


Autologous haematopoietic stem cell transplantation for multiple sclerosis Substantial progress has been made in the development of disease-modifying medications for multiple sclerosis (MS) during the last 20 years. However, in a relevant percentage of patients, the disease cannot completely be contained. Autologous haematopoietic stem cell transplantation (AHSCT) enables rebuilding of a new and healthy immune system and to potentially stop the autoimmune disease process for a long time. A number of studies documenting 4000 cases cumulatively over the past 20 years reported high efficacy of AHSCT in controlling MS inflammatory disease activity. These data and improved safety profiles of the treatment procedures spurred interest in using AHSCT as a treatment option for MS. An open call among MS neurologists as well as among experts in stem cell transplantation in Germany started in December 2021 to join a series of video calls to develop recommendations and outline a registry study project. We provide a consensus-based opinion paper authored by 25 experts on the up-to-date optimal use of AHSCT in managing MS. Current data indicate that patients are most likely to benefit from AHSCT if they are young, ambulatory, with high disease activity, that is, relapses or new magnetic resonance imaging (MRI) lesions. Treatment data with AHSCT will be collected within the German REgistry Cohort of autoLogous haematopoietic stem cell transplantation MS (RECLAIM). Further clinical trials including registry-based analyses and systematic follow-up are urgently needed to better define the optimal patient characteristics as well as the efficacy and safety profile of AHSCT compared with other high-efficacy therapies. These will help to position AHSCT as a treatment option in different MS disease stages.

19.
Neurol Res Pract ; 5(1): 55, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37853454

ABSTRACT

INTRODUCTION: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. METHODS: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially. PERSPECTIVE: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. TRIAL REGISTRATION: NCT04808245.

20.
Front Neurol ; 14: 1237550, 2023.
Article in English | MEDLINE | ID: mdl-37854062

ABSTRACT

Background and aims: Left atrial (LA) enlargement has been repeatedly shown to be associated with the diagnosis of atrial fibrillation (AF). In clinical practice, several parameters are available to determine LA enlargement: LA diameter index (LADI), LA area index (LAAI), or LA volume index (LAVI). We investigated the predictive power of these individual LA parameters for AF in patients with acute ischemic stroke or transient ischemic attack (TIA). Methods: LAETITIA is a retrospective observational study that reflects the clinical reality of acute stroke care in Germany. Consecutive patient cases with acute ischemic cerebrovascular event (CVE) in 2019 and 2020 were identified from the Mannheim stroke database. Predictive power of each LA parameter was determined by the area under the curve (AUC) of receiver operating characteristic curves. A cutoff value was determined. A multiple logistic regression analysis was performed to confirm the strongest LA parameter as an independent predictor of AF in patients with acute ischemic CVE. Results: A total of 1,910 patient cases were included. In all, 82.0% of patients had suffered a stroke and 18.0% had a TIA. Patients presented with a distinct cardiovascular risk profile (reflected by a CHA2DS2-VASc score ≥2 prior to hospital admission in 85.3% of patients) and were moderately affected on admission [median NIHSS score 3 (1; 8)]. In total, 19.5% of patients had pre-existing AF, and 8.0% were newly diagnosed with AF. LAAI had the greatest AUC of 0.748, LADI of 0.706, and LAVI of 0.719 (each p < 0.001 vs. diagonal line; AUC-LAAI vs. AUC-LADI p = 0.030, AUC-LAAI vs. AUC-LAVI p = 0.004). LAAI, increasing NIHSS score on admission, and systolic heart failure were identified as independent predictors of AF in patients with acute ischemic CVE. To achieve a clinically relevant specificity of 70%, a cutoff value of ≥10.3 cm2/m2 was determined for LAAI (sensitivity of 69.8%). Conclusion: LAAI revealed the best prediction of AF in patients with acute ischemic CVE and was confirmed as an independent risk factor. An LAAI cutoff value of 10.3 cm2/m2 could serve as an inclusion criterion for intensified AF screening in patients with embolic stroke of undetermined source in subsequent studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...