Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
AWWA Water Sci ; 5(3)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37424704

ABSTRACT

Modeling premise plumbing systems requires accurate treatment of fixture-specific pressure and flow rate relationships. Each fixture in a building may experience different flow rates based on variable service pressure, its unique pressure-flow behavior, and demands throughout the building. Unique experimentally derived pressure-flow parameters for four faucets, a shower/tub fixture, and toilet were developed. The Water Network Tool for Resilience (WNTR) was also used to explore the impact of premise plumbing systems on water distribution systems through two simple skeletonization cases. Minimum pressures for nodes in water distribution system models that represent demand aggregated premise plumbing systems will likely be non-zero and must capture additional pressure drop or elevation differences at the building scale and associated components, such as water meters or backflow preventers. Results showed that flow rates are impacted by pressure in these systems in complex ways, and usage and system characteristics must be considered to be modeled accurately.

3.
J Water Resour Plan Manag ; 149(4)2023 Apr.
Article in English | MEDLINE | ID: mdl-36970712

ABSTRACT

Tools used to predict hydraulics and water quality within premise plumbing systems have gained recent interest. An open-source Python-based tool-PPMtools-for modeling and analyzing premise plumbing systems with WNTR or EPANET is presented. A relative water age-the time water has spent in a home-study using three real-world single-family homes was used to demonstrate PPMtools. Results showed that increased use-more people or higher flow fixtures-led to a general decrease in relative water ages. However, even with more use, one user could still experience water for a drinking activity with a relative water age equal to, or longer than, the duration of the longest stagnant period (sleeping or absence from home). Simulations also showed that the general relative water ages increased if the homes were plumbed with larger diameter piping [19.1 mm (3/4 in.) versus 12.7 mm (1/2 in.)]. Hot water heaters were found to have the largest impact on relative water age. Smaller volume uses generally had more variability in relative water ages, while larger volume uses (e.g., showering) resulted in generally low relative water ages with less variability because larger uses fully replaced water in the home with water from the main. This study highlights the potential for using PPMtools to explore more complex water quality modeling within premise plumbing systems.

4.
Sci Total Environ ; 694: 133669, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31382174

ABSTRACT

Production and marketing of "nano-enabled" products for consumer purchase has continued to expand. However, many questions remain about the potential release and transformation of these nanoparticle (NP) additives from products throughout their lifecycle. In this work, two surface coating products advertised as containing ZnO NPs as active ingredients, were applied to micronized copper azol (MCA) and aqueous copper azol (ACA) pressure treated lumber. Coated lumber was weathered outdoors for a period of six months and the surface was sampled using a method developed by the Consumer Product Safety Commission (CPSC) to track potential human exposure to ZnO NPs and byproducts through simulated dermal contact. Using this method, the total amount of zinc extracted during a single sampling event was <1 mg/m2 and no evidence of free ZnO NPs was found. Approximately 0.5% of applied zinc was removed via simulated dermal contact over 6-months, with increased weathering periods resulting in increased zinc release. XAFS analysis found that only 27% of the zinc in the as received coating could be described as crystalline ZnO and highlights the transformation of these mineral phases to organically bound zinc complexes during the six-month weathering period. Additionally, SEM images collected after sampling found no evidence of free NP ZnO release during simulated dermal contact. Both simulated dermal contact experiments, and separate leaching studies demonstrate the application of surface coating solutions to either MCA and ACA lumber will reduce the release of copper from the pressure treated lumber. This work provides clear evidence of the transformation of NP additives in consumer products during their use stage.


Subject(s)
Construction Materials , Nanoparticles/chemistry , Wood/chemistry , Copper , Pressure , Zinc
5.
Sci Total Environ ; 670: 78-86, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30903905

ABSTRACT

A major area of growth for "nano-enabled" products has been the addition of nanoparticles (NPs) to surface coatings including paints, stains and sealants. Zinc oxide (ZnO) NPs, long used in sunscreens and sunblocks, have found growing use in surface coating formulations to increase their UV resistance, especially on outdoor products. In this work, ZnO NPs, marketed as an additive to paints and stains, were dispersed in Milli-Q water and a commercial deck stain. Resulting solutions were applied to either Micronized-Copper Azole (MCA) pressure treated lumber or a commercially available composite decking. A portion of coated surfaces were placed outdoors to undergo environmental weathering, while the remaining samples were stored indoors to function as experimental controls. Weathered and control treatments were subsequently sampled periodically for 6 months using a simulated dermal contact method developed by the Consumer Product Safety Commission (CPSC). The release of ZnO NPs, and their associated degradation products, was determined through sequential filtration, atomic spectroscopy, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. Across all treatments, the percentage of applied zinc released through simulated dermal contact did not exceed 4%, although transformation and release of zinc was highly dependent on dispersion medium. For MCA samples weathered outdoors, water-based applications released significantly more zinc than stain-based, 180 ±â€¯28, and 65 ±â€¯9 mg/m2 respectively. Moreover, results indicate that the number of contact events drives material release.

6.
Water Environ Res ; 90(2): 172-179, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29348002

ABSTRACT

The biomass concentrator reactor (BCR), a gravity flow membrane bioreactor (MBR) design, was evaluated for use in treating a municipal wastewater stream. The BCR operates with less than 2.5 cm of pressure head and uses a 3 to 4 mm thick tortuous path membrane with pore size ranging from 18 to 28 µm to achieve solids separation. A two-stage, aerobic/anoxic reactor was evaluated for the removal of chemical oxygen demand (COD), ammonia, total nitrogen, and solids separation. The reactor was fed 72 L/day, with a hydraulic retention time of 9.3 hours, and had a solids retention time of 20 days. The influent COD was reduced by 93%, whereas, influent ammonia was reduced below 0.1 mg/L and total nitrogen was reduced by 53.7%. A lack of readily biodegradable COD limited denitrification and thus total nitrogen removal. The reactor solids were retained completely in the reactor by the membrane for the duration of testing.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid/methods , Nitrogen , Oxygen , Wastewater , Water Purification
7.
Sci Total Environ ; 613-614: 714-723, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28938214

ABSTRACT

A major area of growth for "nano-enabled" consumer products have been surface coatings, including paints stains and sealants. Ceria (CeO2) nanoparticles (NPs) are of interest as they have been used as additives in these these products to increase UV resistance. Currently, there is a lack of detailed information on the potential release, and speciation (i.e., ion vs. particle) of CeO2 NPs used in consumer-available surface coatings during intended use scenarios. In this study, both Micronized-Copper Azole pressure-treated lumber (MCA), and a commercially available composite decking were coated with CeO2 NPs dispersed in Milli-Q water or wood stain. Coated surfaces were divided into two groups. The first was placed outdoors to undergo environmental weathering, while the second was placed indoors to act as experimental controls. Both weathered surfaces and controls were sampled over a period of 6months via simulated dermal contact using methods developed by the Consumer Product Safety Commission (CPSC). The size and speciation of material released was determined through sequential filtration, total metals analysis, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. The total ceria release from MCA coated surfaces was found to be dependent on dispersion matrix with aqueous applications releasing greater quantities of CeO2 than stain based applications, 66±12mg/m2 and 36±7mg/m2, respectively. Additionally, a substantial quantity of CeO2 was reduced to Ce(III), present as Ce(III)-organic complexes, over the 6-month experimental period in aqueous based applications.


Subject(s)
Cerium/metabolism , Nanoparticles/metabolism , Skin/chemistry , Wood/chemistry , Cerium/adverse effects , Environmental Health , Humans , Nanoparticles/adverse effects
8.
Sci Total Environ ; 598: 413-420, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28448933

ABSTRACT

Micronized copper azole (MCA) and micronized copper quaternary (MCQ) are the latest wood preservatives to replace the liquid alkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use of MCA has become abundant in the wood preservative industry with approximately 38millionlbs of copper carbonate being used to treat lumber each year. Despite this widespread usage, little information is available on the bioaccessibility of this preservative upon gastrointestinal exposure. Using a simulated hand-to-mouth/gastric system exposure study we investigated several types of commercially available copper-treated lumber products as-purchased and after exposure to outdoor weathering conditions. Soluble and particulate fractions of copper were measured after transfer to and release from surface wipes passed along copper-treated lumber and exposed to synthetic stomach fluid (SSF, pH1.5) or deionized (DI) water. Wipes passed along new boards contained greater amounts of copper than wipes from weathered boards. The total copper recovered from the wipes after microwave extraction varied among the different wood types. For all wood types the copper released into SSF was more soluble than what was soluble in DI water. The data suggest that copper from treated wood is highly bioaccessible in SSF regardless of wood type and weathering condition.


Subject(s)
Azoles/pharmacokinetics , Copper/pharmacokinetics , Environmental Exposure/analysis , Wood/chemistry , Arsenates , Eating , Humans , Pressure , Water
9.
Environ Sci (Camb) ; 3(2): 224-234, 2017.
Article in English | MEDLINE | ID: mdl-33425368

ABSTRACT

Real-time monitoring of water reuse systems ensures the production of high quality water to protect human health at the point-of-use. In this study, several online real-time sensors were utilized to monitor effluent from a wastewater fed laboratory-scale membrane bioreactor (MBR) under natural and simulated failure conditions. These simulated failures included adding reactor mixed liquor to emulate a membrane breach, and spiking MS2 bacteriophage into the reactor to create a high viral load, which might be observed during an outbreak. The CANARY event detection software was used to analyze sensor data and report changes in water quality that might be indicative of poor system behavior. During simulated failure conditions, CANARY reported 20 alarms, accurately detecting each failure. During natural operating conditions, 219 alarms were produced and 189 were attributed to known events (e.g., system and sensor maintenance). The remaining alarms (23) during natural operating conditions were considered to have an unknown cause. However, 13 of those had signal deviations similar to known events, but could not be definitively linked to a source. The results of this study suggest that real-time monitoring in conjunction with CANARY analysis may be useful as an early warning system for monitoring the effluent of water reuse systems, and may help to quickly identify treatment malfunctions or other abnormal conditions.

10.
Sci Total Environ ; 548-549: 441-449, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26826852

ABSTRACT

Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5mgm(-2)) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was evident. Based on the wipe sample data, a playground visit may result in a potential exposure to 2.58mg of copper, which is near or exceeds the daily tolerable upper intake limits for children under the age of 8, if completely ingested through hand-to-mouth transfer. While nanoparticles were found, there is not enough information to estimate the exposure from the released particles due to a lack of published literature on copper carbonate.


Subject(s)
Copper/analysis , Environmental Exposure/statistics & numerical data , Particulate Matter/analysis , Wood/chemistry , Environmental Monitoring
11.
Chemosphere ; 144: 767-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26414737

ABSTRACT

This article reports biodegradation rates for a commercial dispersant, JD-2000, South Louisiana crude oil (SLC) alone, and SLC dispersed with JD-2000 at 5 and 25 °C. Results from the biodegradation experiments revealed that Component X, a chemical marker for JD-2000, rapidly degraded at both temperatures. The application of JD-2000 decreased by half the overall biodegradation rate of aliphatic compounds at 25 °C. At 5 °C, a residual fraction consisting of iso- and n-alkanes (C29-C35) persisted after 56 d. The combination of dispersant and higher temperature resulted in faster removal rates for 2- and 3-ring polycyclic aromatic hydrocarbons. When compared with Corexit 9500, our results suggest that the chemistry of the surfactant (or surfactants) in JD-2000 might have favored oil dissolution (substrate transport to the aqueous phase) as an uptake mechanism over adhesion, which requires direct contact of the biomass with the oil.


Subject(s)
Petroleum/analysis , Surface-Active Agents/pharmacology , Temperature , Alkanes/isolation & purification , Alkanes/metabolism , Biodegradation, Environmental/drug effects , Louisiana , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/metabolism , Surface-Active Agents/chemistry
12.
Chemosphere ; 81(9): 1131-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20855103

ABSTRACT

The US Army is evaluating new, insensitive explosives to produce safer munitions. Two potential new components are 2,4-dinitro anisole (DNAN) and N-methyl paranitro aniline (MNA), which would eventually make their way to waste streams generated in the production and handling of new munitions. The effectiveness of anaerobic fluidized-bed bioreactors (AFBB) was studied for treatment and transformation of these two new chemical components in munitions. Each compound was fed into a separate reactor and monitored for removal and transformation, using ethanol as the electron donor. The results show that both were degradable using the AFBB system. DNAN was found to transform into diaminoanisole and MNA was found to transform into N-methyl-p-phenylenediamine. Both of these by-products appeared to form azobond polymers after exposure to air. To test the resilience of the reactors, the compounds were removed from the feed streams for 3 weeks and then reintroduced. DNAN showed that a re-acclimation period was necessary for it to be degraded again, while MNA was removed immediately upon reintroduction. The AFBB technology was shown here to be an effective means of removing the new munitions, but produce secondary compounds that could potentially be just as harmful and require further study.


Subject(s)
Aniline Compounds/metabolism , Anisoles/metabolism , Explosive Agents/metabolism , Waste Disposal, Fluid , Water Pollutants, Chemical/metabolism , Anaerobiosis , Aniline Compounds/analysis , Anisoles/analysis , Bioreactors , Biotransformation , Explosive Agents/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...