Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 228: 115343, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36934618

ABSTRACT

The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress. The main attention in this article is focused on the detection methods of amyloid-ß oligomers and p-Tau which are representative biomarkers for Alzheimer's disease, α-synuclein as the biomarker of Parkinson's disease, and α-amylase and lysozyme as the biomarkers of stress using molecular imprinting technology. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.


Subject(s)
Alzheimer Disease , Molecular Imprinting , Neurodegenerative Diseases , Parkinson Disease , Humans , Molecularly Imprinted Polymers , Neurodegenerative Diseases/diagnosis , Alzheimer Disease/diagnosis , Biomarkers , Molecular Imprinting/methods , Electrodes , Electrochemical Techniques/methods
2.
Talanta ; 241: 123252, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35121544

ABSTRACT

In this research the molecular imprinting technology was applied for the formation of glyphosate-sensitive layer. The glyphosate imprinted conducting polymer polypyrrole (MIPpy) was deposited on a gold chip/electrode and used as an electrochemical surface plasmon resonance (ESPR) sensor. The results described in this study disclose some restrictions and challenges, which arise during the development of glyphosate ESPR sensor based on the molecularly imprinted polymer development stage. It was demonstrated, that glyphosate could significantly affect the electrochemical deposition process of molecularly imprinted polymer on the electrode. The results of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and surface plasmon resonance (SPR) have demonstrated that glyphosate molecules tend to interact with bare gold electrode and thus hinder the polypyrrole deposition. As a possible solution, the formation of a self-assembled monolayer (SAM) of 11-(1H-Pyrrol-1-yl)undecane-1-thiol (PUT) before electrochemical deposition of MIPpy and NIPpy was applied. Dissociation constant (KD) and free energy of Gibbs (ΔG0) values of glyphosate on MIPpy and Ppy without glyphosate imprints (NIPpy) were calculated. For the interaction of glyphosate with MIPpy the KD was determined as 38.18 ± 2.33⋅10-5 and ΔG0 as -19.51 ± 0.15 kJ/mol.


Subject(s)
Molecular Imprinting , Polymers , Electrochemical Techniques/methods , Electrodes , Glycine/analogs & derivatives , Molecular Imprinting/methods , Polymers/chemistry , Pyrroles/chemistry , Surface Plasmon Resonance , Glyphosate
3.
Int J Mol Sci ; 22(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068596

ABSTRACT

The review focuses on the overview of electrochemical sensors based on molecularly imprinted polymers (MIPs) for the determination of uric acid. The importance of robust and precise determination of uric acid is highlighted, a short description of the principles of molecular imprinting technology is presented, and advantages over the others affinity-based analytical methods are discussed. The review is mainly concerned with the electro-analytical methods like cyclic voltammetry, electrochemical impedance spectroscopy, amperometry, etc. Moreover, there are some scattered notes to the other electrochemistry-related analytical methods, which are capable of providing additional information and to solve some challenges that are not achievable using standard electrochemical methods. The significance of these overviewed methods is highlighted. The overview of the research that is employing MIPs imprinted with uric acid is mainly targeted to address these topics: (i) type of polymers, which are used to design uric acid imprint structures; (ii) types of working electrodes and/or other parts of signal transducing systems applied for the registration of analytical signal; (iii) the description of the uric acid extraction procedures applied for the design of final MIP-structure; (iv) advantages and disadvantages of electrochemical methods and other signal transducing methods used for the registration of the analytical signal; (vi) overview of types of interfering molecules, which were analyzed to evaluate the selectivity; (vi) comparison of analytical characteristics such as linear range, limits of detection and quantification, reusability, reproducibility, repeatability, and stability. Some insights in future development of uric acid sensors are discussed in this review.


Subject(s)
Biosensing Techniques , Electrochemistry , Molecularly Imprinted Polymers/chemistry , Uric Acid/isolation & purification , Humans , Uric Acid/chemistry
4.
Talanta ; 220: 121414, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32928426

ABSTRACT

Uric acid-imprinted polypyrrole-based (MIP(UA)-Ppy) electrochemical quartz crystal microbalance sensor (EQCM) was developed. Experiments and theoretical calculations were focused on molecular interactions between uric acid molecule and: i) polypyrrole imprinted by uric acid (MIP(UA)-Ppy) ii) polypyrrole film without any molecular imprints (NIP-Ppy). Resonant frequency differences during electrochemical deposition of MIP(UA)-Ppy and NIP-Ppy films were observed and were attributed to the phenomenon of molecule capture within formed Ppy matrix. EQCM-resonators modified by MIP-Ppy showed the following advantages: selectivity, qualitative response, cost-effectiveness, and simple procedure. The selectivity of MIP(UA)-Ppy was tested by the replacement of uric acid in the PBS solution with several different concentrations of caffeine and glucose. Langmuir isotherm based molecular adsorption model was applied to evaluate the interaction of MIP(UA)-Ppy with uric acid. From experimental results calculated the standard Gibbs free energy of association (ΔGa) of uric acid with MIP(UA)-Ppy is -16.4 ± 2.05 kJ/mol and with NIP-Ppy is -13.3 ± 8.56 kJ/mol ΔG values illustrate that the formation of uric acid complex with MIP(UA)-Ppy is thermodynamically more favourable than that for complexation with NIP-Ppy.

5.
Sci Total Environ ; 621: 1626-1632, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29054624

ABSTRACT

This study focused on measurement of lanthanides in surface water (SW) and ground water (GW) samples from the Chernobyl Exclusion Zone. Results showed that the total lanthanide concentration in SW ranges from 500 to 1100ngL-1 and is about 10 times lower than the GW concentration. The normalized patterns of lanthanide concentrations increase from lighter elements to heavier lanthanides. Concurrently, concentration anomalies of Ce, Eu, and Er are visible. The Er anomaly is the most noticeable and exceeds the theoretical calculation by about 13 times. The Ce and Eu anomalies are likely related to the variety of oxidation states of these elements. Meanwhile, the cause of the Er anomaly is not completely clear, but is likely related to the Chernobyl Nuclear Power Plant accident, since increased concentrations correlate with the distribution of contamination in the zone. 137Cs activity measurements partially confirm this hypothesis. Simultaneously, there is a relationship between the positive Er anomaly and increase in 235U concentrations. However, there is no reliable information in the literature that indicates that Er was used in the Chernobyl Nuclear Power Plant before the reactor accident.

6.
Phys Chem Chem Phys ; 19(2): 1029-1038, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27942641

ABSTRACT

In this research study, we investigated the morphology of polypyrrole nanostructures, which were formed during the electrochemical deposition of conducting polymer. An electrochemical quartz crystal microbalance (EQCM) cell equipped with a flow-through system was employed to exchange solutions of different compositions within the EQCM cell. When bare PBS buffer in the EQCM cell was exchanged with PBS buffer with pyrrole we observed a distinct increase in the resonance frequency Δf. This change in the resonance frequency and electrical capacitance, which was calculated from electrochemical impedance spectroscopy (EIS) data, illustrate that pyrrole on the surface of the gold electrode formed an adsorbed layer (adlayer). The formation of a pyrrole adlayer before the potential pulse that induced polymerization was investigated by QCM-based measurements. The electrochemical polymerization of this adlayer was induced by a single potential pulse and a nanostructured layer, which consisted of adsorbed polypyrrole (Ppy) nanoparticles with a diameter of 50 nm, was formed. QCM and EIS data revealed that by the next cycle of the electrochemical formation of Ppy, which was investigated after flow-through-based exchange of solutions, the initially formed Ppy surface was covered by the adlayer of pyrrole. This adlayer was desorbed when pyrrole was removed from the solution. When electrochemical polymerization was performed using 50 potential pulses, a Ppy layer, which had more complex morphology, was formed on the EQCM crystal. Scanning electron microscopy showed that the conductivity of this layer was unequally distributed. We observed that the polypyrrole layer formed by electrochemical deposition, which was performed using potential pulses, was formed out of aggregated spherical Ppy particles with a diameter of 50 nm.

7.
Langmuir ; 31(10): 3186-93, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25706444

ABSTRACT

Electrochemical quartz crystal microbalance (EQCM) was used for the evaluation of conducting polymer polypyrrole (Ppy), which was formed by a sequence of potential pulses on a Au-plated EQCM disc. The Ppy layer was obtained from freshly prepared polymerization solution consisting of pyrrole that was dissolved in phosphate buffer. The main aim of the study was to determine some aspects of the Ppy layer formation process. The polymerization process was estimated by EQCM and chronoamperometry. The Cottrell equation was used for the integration of total charge that was passing through the electrochemical cell during the formation of the Ppy-based layer. It was found that the charge of the electrical double layer, which was estimated while applying an Anson plot, is negative. From this observation, it could be assumed that the pyrrole oxidation process could be well described by principles of heterogeneous kinetics. The negative value of the electrical double layer was the result of a charge-transfer restriction. This restriction of charge transfer could occur due to partial blocking of the electrode surface by an aggregated Ppy particle-based layer. Quartz crystal motional resistance (R) was taken into account during this research. Ppy layer formation is represented schematically on the basis of the obtained experimental results and analytical data.

8.
Langmuir ; 23(9): 4965-71, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17378593

ABSTRACT

The kinetics of electrocatalytic oxidation of ascorbate was studied on a series of redox self-assembled monolayers (SAMs) of the general formula Fc(CH2)4COO(CH2)nSH as electron-transfer mediators, where Fc is the ferrocenyl group and n = 3, 6, 9, and 11. We show that the rate of electron transfer from ascorbate to the surface-confined Fc+ decreases with increasing n. The rationale for the dependence of the rate of electrocatalytic activity and n, in the presence of ClO4, is obtained from Fourier-transform surface-enhanced Raman spectroscopy (FT-SERS), cyclic voltammetry, and electrochemical quartz crystal microbalance (EQCM) data. In particular, FT-SERS shows decreasing amounts of surface-bound ClO4- upon oxidation of the ferrocene with decreasing n, while EQCM data show the effective electrode mass increase was consistently higher on the shorter chain SAMs. This mass increase is likely due to increasing ferricinium cation hydration. As n decreases, the SAMs become less ordered (FT-SERS data), as is widely known from previous literature. Disorder favors water penetration into the SAM, which, in turn, increases the hydration of the Fc+ (EQCM data). Increased hydration of the Fc+ impedes the formation of Fc+-ClO4- ion pairs (EQCM and FT-SERS data), which, consequently, accelerates the electrocatalytic electron transfer from the solution-dissolved ascorbate.


Subject(s)
Ascorbic Acid/chemistry , Ferrous Compounds/chemistry , Membranes, Artificial , Crystallization , Electrochemistry , Ferrous Compounds/chemical synthesis , Metallocenes , Molecular Conformation , Oxidation-Reduction , Quartz/chemistry , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...