Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Genet ; 52(8): 778-789, 2020 08.
Article in English | MEDLINE | ID: mdl-32661416

ABSTRACT

Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes that were detectable only with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hypermethylation and somatic mutations in TET2, DNMT3B, IDH1 and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer that provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.


Subject(s)
DNA Methylation/genetics , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , Carcinogenesis/genetics , Epigenomics/methods , Gene Expression Regulation, Neoplastic/genetics , Genome/genetics , Humans , Male , Middle Aged , Mutation/genetics , Prospective Studies , Sequence Analysis, DNA/methods , Exome Sequencing/methods , Whole Genome Sequencing/methods
2.
Eur Urol ; 76(5): 562-571, 2019 11.
Article in English | MEDLINE | ID: mdl-30928160

ABSTRACT

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is the lethal form of the disease. Several recent studies have identified genomic alterations in mCRPC, but the clinical implications of these genomic alterations have not been fully elucidated. OBJECTIVE: To use whole-genome sequencing (WGS) to assess the association between key driver gene alterations and overall survival (OS), and to use whole-transcriptome RNA sequencing to identify genomic drivers of enzalutamide resistance. DESIGN, SETTING, AND PARTICIPANTS: We performed survival analyses and gene set enrichment analysis (GSEA) on WGS and RNA sequencing results for a cohort of 101 mCRPC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: OS was the clinical endpoint for all univariate and multivariable survival analyses. Candidate drivers of enzalutamide resistance were identified in an unbiased manner, and mutations of the top candidate were further assessed for enrichment among enzalutamide-resistant patients using Fisher's exact test. RESULTS AND LIMITATIONS: Harboring two DNA alterations in RB1 was independently predictive of poor OS (median 14.1 vs 42.0mo; p=0.007) for men with mCRPC. GSEA identified the Wnt/ß-catenin pathway as the top differentially modulated pathway among enzalutamide-resistant patients. Furthermore, ß-catenin mutations were exclusive to enzalutamide-resistant patients (p=0.01) and independently predictive of poor OS (median 13.6 vs 41.7mo; p=0.025). CONCLUSIONS: The presence of two RB1 DNA alterations identified in our WGS analysis was independently associated with poor OS among men with mCRPC. The Wnt/ß-catenin pathway plays an important role in enzalutamide resistance, with differential pathway expression and enrichment of ß-catenin mutations in enzalutamide-resistant patients. Moreover, ß-catenin mutations were predictive of poor OS in our cohort. PATIENT SUMMARY: We observed a correlation between genomic findings for biopsy samples from metastases from men with metastatic castration-resistant prostate cancer (mCRPC) and clinical outcomes. This work sheds new light on clinically relevant genomic alterations in mCRPC and provides a roadmap for the development of new personalized treatment regimens in mCRPC.


Subject(s)
Drug Resistance, Neoplasm/genetics , Neoplasm Metastasis , Phenylthiohydantoin/analogs & derivatives , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Benzamides , Biomarkers, Tumor/blood , Humans , Male , Middle Aged , Neoplasm Metastasis/drug therapy , Neoplasm Staging , Nitriles , Outcome Assessment, Health Care , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/adverse effects , Predictive Value of Tests , Prognosis , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Whole Genome Sequencing/methods
3.
Mol Cancer Res ; 17(6): 1235-1240, 2019 06.
Article in English | MEDLINE | ID: mdl-30918106

ABSTRACT

Therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC) can be accompanied by treatment-emergent small-cell neuroendocrine carcinoma (t-SCNC), a morphologically distinct subtype. We performed integrative whole-genome and -transcriptome analysis of mCRPC tumor biopsies including paired biopsies after progression, and multiple samples from the same individual. t-SCNC was significantly less likely to have amplification of AR or an intergenic AR-enhancer locus, and demonstrated lower expression of AR and its downstream transcriptional targets. Genomic and transcriptional hallmarks of t-SCNC included biallelic loss of RB1, elevated expression levels of CDKN2A and E2F1, and loss of expression of the AR and AR-responsive genes including TMPRSS2 and NKX3-1. We identified three tumors that converted from adenocarcinoma to t-SCNC and demonstrate spatial and temporal intrapatient heterogeneity of metastatic tumors harboring adenocarcinoma, t-SCNC, or mixed expression phenotypes, with implications for treatment strategies in which dual targeting of adenocarcinoma and t-SCNC phenotypes may be necessary. IMPLICATIONS: The t-SCNC phenotype is characterized by lack of AR enhancer gain and loss of RB1 function, and demonstrates both interindividual and intraindividual heterogeneity.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/6/1235/F1.large.jpg.


Subject(s)
Neuroendocrine Tumors/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Transcription, Genetic/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Biopsy/methods , Genome-Wide Association Study/methods , Humans , Male , Neuroendocrine Tumors/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics
5.
J Clin Oncol ; 36(24): 2492-2503, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29985747

ABSTRACT

Purpose The prevalence and features of treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC) are not well characterized in the era of modern androgen receptor (AR)-targeting therapy. We sought to characterize the clinical and genomic features of t-SCNC in a multi-institutional prospective study. Methods Patients with progressive, metastatic castration-resistant prostate cancer (mCRPC) underwent metastatic tumor biopsy and were followed for survival. Metastatic biopsy specimens underwent independent, blinded pathology review along with RNA/DNA sequencing. Results A total of 202 consecutive patients were enrolled. One hundred forty-eight (73%) had prior disease progression on abiraterone and/or enzalutamide. The biopsy evaluable rate was 79%. The overall incidence of t-SCNC detection was 17%. AR amplification and protein expression were present in 67% and 75%, respectively, of t-SCNC biopsy specimens. t-SCNC was detected at similar proportions in bone, node, and visceral organ biopsy specimens. Genomic alterations in the DNA repair pathway were nearly mutually exclusive with t-SCNC differentiation ( P = .035). Detection of t-SCNC was associated with shortened overall survival among patients with prior AR-targeting therapy for mCRPC (hazard ratio, 2.02; 95% CI, 1.07 to 3.82). Unsupervised hierarchical clustering of the transcriptome identified a small-cell-like cluster that further enriched for adverse survival outcomes (hazard ratio, 3.00; 95% CI, 1.25 to 7.19). A t-SCNC transcriptional signature was developed and validated in multiple external data sets with > 90% accuracy. Multiple transcriptional regulators of t-SCNC were identified, including the pancreatic neuroendocrine marker PDX1. Conclusion t-SCNC is present in nearly one fifth of patients with mCRPC and is associated with shortened survival. The near-mutual exclusivity with DNA repair alterations suggests t-SCNC may be a distinct subset of mCRPC. Transcriptional profiling facilitates the identification of t-SCNC and novel therapeutic targets.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Aged, 80 and over , Carcinoma, Neuroendocrine/epidemiology , DNA Repair/genetics , Humans , Male , Middle Aged , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/epidemiology
6.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30033370

ABSTRACT

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Subject(s)
Genomic Structural Variation/genetics , Prostatic Neoplasms/genetics , Aged , Aged, 80 and over , BRCA2 Protein/metabolism , Cyclin-Dependent Kinases/metabolism , DNA Copy Number Variations , Exome , Gene Expression Profiling/methods , Genomics/methods , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Tandem Repeat Sequences/genetics , Tumor Suppressor Protein p53/metabolism , Whole Genome Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...