Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 115(2): 306-321, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37949818

ABSTRACT

The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vß chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Thymus Gland , Animals , Mice , Humans , Mice, Inbred C57BL , Thymocytes , Receptors, Antigen, T-Cell
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835342

ABSTRACT

After exposure to an antigen, CD8 T cells reach a decision point about their fate: to become either short-lived effector cells (SLECs) or memory progenitor effector cells (MPECs). SLECs are specialized in providing an immediate effector function but have a shorter lifespan and lower proliferative capacity compared to MPECs. Upon encountering the cognate antigen during an infection, CD8 T cells rapidly expand and then contract to a level that is maintained for the memory phase after the peak of the response. Studies have shown that the contraction phase is mediated by TGFß and selectively targets SLECs, while sparing MPECs. The aim of this study is to investigate how the CD8 T cell precursor stage determines TGFß sensitivity. Our results demonstrate that MPECs and SLECs have differential responses to TGFß, with SLECs being more sensitive to TGFß than MPECs. This difference in sensitivity is associated with the levels of TGFßRI and RGS3, and the SLEC-related transcriptional activator T-bet binding to the TGFßRI promoter may provide a molecular basis for increased TGFß sensitivity in SLECs.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , T-Lymphocyte Subsets , Transforming Growth Factor beta , Animals , Mice , Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology , Transforming Growth Factor beta/immunology
3.
Front Immunol ; 12: 714137, 2021.
Article in English | MEDLINE | ID: mdl-34177971

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2021.624131.].

4.
Front Immunol ; 12: 624131, 2021.
Article in English | MEDLINE | ID: mdl-33717132

ABSTRACT

Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.


Subject(s)
Autoimmunity , CD8-Positive T-Lymphocytes/metabolism , Melanocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Skin Pigmentation , Skin/metabolism , Vitiligo/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , Cellular Microenvironment , Cytotoxicity, Immunologic , Humans , Melanocytes/immunology , Melanocytes/pathology , Oxidative Stress , Signal Transduction , Skin/immunology , Skin/pathology , Vitiligo/genetics , Vitiligo/immunology , Vitiligo/pathology
5.
Front Oncol ; 10: 699, 2020.
Article in English | MEDLINE | ID: mdl-32500025

ABSTRACT

Inhibitory checkpoint blockade therapy is an immunomodulatory strategy that results in the restoration of T cell functions, and its efficacy depends on the recognition of tumor cells for destruction. Considering the factors at play, one could propose that anti-tumor responses will not occur if tumor cells are immunologically invisible to T cells. In this study, we tested a strategy based on the modulation of cancer cell's immunovisibility through HDAC inhibition. In a model (heterotopic and orthotopic) of mouse urothelial bladder cancer, we demonstrated that the use of intratumoral or intravesical HDACi in combination with systemic anti-PD-1 was effective at inducing curative responses with durable anti-tumor immunity capable of preventing tumor growth at a distal site. Mechanistically, we determined that protective responses were dependent on CD8 cells, but not NK cells. Of significance, in an in vitro human model, we found that fully activated T cells fail at killing bladder cancer cells unless tumor cells were pretreated with HDACi. Complementary to this observation, we found that HDACi cause gene deregulation, that results in the upregulation of genes responsible for mediating immunorecognition, NKG2D ligands and HSP70. Taken together, these data indicate that HDAC inhibition results in the elimination of the tumor cell's "invisibility cloak" that prevents T cells from recognizing and killing them. Finally, as checkpoint blockade therapy moves into the adjuvant setting, its combined use with locally administrated HDACi represents a new approach to be included in our current therapeutic treatment toolbox.

6.
J Invest Dermatol ; 140(6): 1131-1133, 2020 06.
Article in English | MEDLINE | ID: mdl-32446332

ABSTRACT

In the study by Jacquemin et al., the authors reported that ligands for NKG2D are upregulated in vitiligo perilesional skin and especially in patients with active disease. The reasons for the elevated expression of NKG2D ligands are unknown. This study, however, provides a framework for understanding vitiligo: Skin resident CD8 T cells recognize and kill melanocytes through NKG2D signaling. This event results in the increased production and release of cyto/chemokines and the development of long-lasting CD8 T cells, which in turn causes the recruitment of new T cells, thus perpetuating and disseminating the disease.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Vitiligo , CD8-Positive T-Lymphocytes , Humans , Melanocytes , Skin
7.
J Immunother Cancer ; 7(1): 48, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30777125

ABSTRACT

BACKGROUND: The development of memory responses is an evolutionary function of the adaptive immune system. We propose that for the immune system to populate the memory compartment with the best-suited CD8 T cells it utilizes a process of certification or molecular accreditation mediated through Natural Killer Group 2D (NKG2D). This process of certification assures that the memory compartment is filled with CD8 T cells that have demonstrated their ability to kill their cognate targets through a two-step process that utilizes T cell receptor (TCR) and NKG2D signaling. METHODS: One week after immunization with peptide-pulsed dendritic cells, NKG2D signaling was transiently blocked in vivo with a single injection of neutralizing antibodies. Under such conditions, we determined the importance of NKG2D signaling during the effector phase for memory formation without compromising NKG2D signaling at the memory phase. Both open (polyclonal) and closed (monoclonal) CD8 T cell repertoires were studied. RESULTS: We show that signaling through NKG2D mediated this certification. Temporary blockade of NKG2D signaling during the effector phase resulted in the formation of highly defective memory CD8 T cells characterized by altered expression of the ribosomal protein S6 and epigenetic modifiers, suggesting modifications in the T cell translational machinery and epigenetic programming. Finally, these uncertified memory cells were not protective against a B16 tumor challenge. CONCLUSION: Signaling through NKG2D during the effector phase (certification) favors the development of functional memory CD8 T cells, a previously undescribed role for NKG2D. Temporary blockade of NKG2D signaling during the effector phase results in the formation of highly defective memory CD8 T cells potentially by affecting the expression of the ribosomal protein S6 and epigenetic modifiers, suggesting alterations in T cell translational machinery and epigenetic programming.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , NK Cell Lectin-Like Receptor Subfamily K/immunology , Animals , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Transgenic
8.
Antimicrob Agents Chemother ; 58(4): 2295-303, 2014.
Article in English | MEDLINE | ID: mdl-24492373

ABSTRACT

Dronedarone and amiodarone are cationic lipophilic benzofurans used to treat cardiac arrhythmias. They also have activity against the parasitic protozoan Trypanosoma cruzi, the causative agent of Chagas' disease. They function by disrupting intracellular Ca2+ homeostasis of the parasite and by inhibiting membrane sterol (ergosterol) biosynthesis. Amiodarone also has activity against Leishmania mexicana, suggesting that dronedarone might likewise be active against this organism. This might be of therapeutic interest, since dronedarone is thought to have fewer side effects in humans than does amiodarone. We show here that dronedarone effectively inhibits the growth of L. mexicana promastigotes in culture and, more importantly, has excellent activity against amastigotes inside infected macrophages (the clinically relevant form) without affecting the host cell, with the 50% inhibitory concentrations against amastigotes being 3 orders of magnitude lower than those obtained previously with T. cruzi amastigotes (0.65 nM versus 0.75 µM). As with amiodarone, dronedarone affects intracellular Ca2+ homeostasis in the parasite, inducing an elevation of intracellular Ca2+ levels. This is achieved by rapidly collapsing the mitochondrial membrane potential and inducing an alkalinization of acidocalcisomes at a rate that is faster than that observed with amiodarone. We also show that dronedarone inhibits parasite oxidosqualene cyclase, a key enzyme in ergosterol biosynthesis known to be vital for survival. Overall, our results suggest the possibility of repurposing dronedarone as a treatment for cutaneous, and perhaps other, leishmaniases.


Subject(s)
Amiodarone/analogs & derivatives , Amiodarone/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Dronedarone , Ergosterol/metabolism , Homeostasis/drug effects , Leishmania mexicana/drug effects , Leishmania mexicana/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/metabolism
9.
Antimicrob Agents Chemother ; 56(7): 3720-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22508311

ABSTRACT

Amiodarone, a commonly used antiarrhythmic, is also a potent and selective anti-Trypanosoma cruzi agent. Dronedarone is an amiodarone derivative in which the 2,5-diiodophenyl moiety of the parental drug has been replaced with an unsubstituted phenyl group aiming to eliminate the thyroid toxicity frequently observed with amiodarone treatment. Dronedarone has been approved by the Food and Drug Administration (FDA), and its use as a safe antiarrhythmic has been extensively documented. We show here that dronedarone also has potent anti-T. cruzi activity, against both extracellular epimastigotes and intracellular amastigotes, the clinically relevant form of the parasite. The 50% inhibitory concentrations against both proliferative stages are lower than those previously reported for amiodarone. The mechanism of action of dronedarone resembles that of amiodarone, as it induces a large increase in the intracellular Ca(2+) concentration of the parasite, which results from the release of this ion from intracellular storage sites, including a direct effect of the drug on the mitochondrial electrochemical potential, and through alkalinization of the acidocalcisomes. Our results suggest a possible future repurposed use of dronedarone for the treatment of Chagas' disease.


Subject(s)
Amiodarone/analogs & derivatives , Trypanosoma cruzi/drug effects , Amiodarone/adverse effects , Amiodarone/chemistry , Amiodarone/pharmacology , Calcium/metabolism , Chagas Disease/parasitology , Dronedarone , Membrane Potential, Mitochondrial/drug effects , Trypanosoma cruzi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...