Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0266556, 2022.
Article in English | MEDLINE | ID: mdl-35413059

ABSTRACT

Recent advances in cultural analytics and large-scale computational studies of art, literature and film often show that long-term change in the features of artistic works happens gradually. These findings suggest that conservative forces that shape creative domains might be underestimated. To this end, we provide the first large-scale formal evidence of the association between poetic meter and semantics in 18-19th century European literatures, using Czech, German and Russian collections with additional data from English poetry and early modern Dutch songs. Our study traces this association through a series of unsupervised classifications using the abstracted semantic features of poems that are inferred for individual texts with the aid of topic modeling. Topics alone enable recognition of the meters in each observed language, as may be seen from the same-meter samples clustering together (median Adjusted Rand Index between 0.48 and 1 across traditions). In addition, this study shows that the strength of the association between form and meaning tends to decrease over time. This may reflect a shift in aesthetic conventions between the 18th and 19th centuries as individual innovation was increasingly favored in literature. Despite this decline, it remains possible to recognize semantics of the meters from past or future, which suggests the continuity in meter-meaning relationships while also revealing the historical variability of conditions across languages. This paper argues that distinct metrical forms, which are often copied in a language over centuries, also maintain long-term semantic inertia in poetry. Our findings highlight the role of the formal features of cultural items in influencing the pace and shape of cultural evolution.


Subject(s)
Music , Semantics , Creativity , Esthetics , Humans , Language
2.
Nat Hum Behav ; 5(11): 1481-1483, 2021 11.
Article in English | MEDLINE | ID: mdl-34764463

Subject(s)
Authorship , Humans
3.
Nano Lett ; 20(4): 2288-2295, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32130017

ABSTRACT

The recently discovered two-dimensional magnetic insulator CrI3 is an intriguing case for basic research and spintronic applications since it is a ferromagnet in the bulk but an antiferromagnet in bilayer form, with its magnetic ordering amenable to external manipulations. Using the first-principles quantum transport approach, we predict that injecting unpolarized charge current parallel to the interface of the bilayer-CrI3/monolayer-TaSe2 van der Waals (vdW) heterostructure will induce spin-orbit torque and thereby drive the dynamics of magnetization on the first monolayer of CrI3 in direct contact with TaSe2. By combining the calculated complex angular dependence of spin-orbit torque with the Landau-Lifshitz-Gilbert equation for classical dynamics of magnetization, we demonstrate that current pulses can switch the direction of magnetization on the first monolayer to become parallel to that of the second monolayer, thereby converting CrI3 from antiferromagnet to ferromagnet while not requiring any external magnetic field. We explain the mechanism of this reversible current-driven nonequilibrium phase transition by showing that first monolayer of CrI3 carries current due to evanescent wave functions injected by metallic transition metal dichalcogenide TaSe2, while concurrently acquiring strong spin-orbit coupling via such a proximity effect, whereas the second monolayer of CrI3 remains insulating. The transition can be detected by passing vertical read current through the vdW heterostructure, encapsulated by a bilayer of hexagonal boron nitride and sandwiched between graphite electrodes, where we find a tunneling magnetoresistance of ≃240%.

4.
J Chem Phys ; 147(23): 234110, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29272933

ABSTRACT

Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.

5.
J Chem Phys ; 144(7): 074104, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26896973

ABSTRACT

In the presence of multiscale dynamics in a reaction network, direct simulation methods become inefficient as they can only advance the system on the smallest scale. This work presents stochastic averaging techniques to accelerate computations for obtaining estimates of expected values and sensitivities with respect to the steady state distribution. A two-time-scale formulation is used to establish bounds on the bias induced by the averaging method. Further, this formulation provides a framework to create an accelerated "averaged" version of most single-scale sensitivity estimation methods. In particular, we propose the use of a centered ergodic likelihood ratio method for steady state estimation and show how one can adapt it to accelerated simulations of multiscale systems. Finally, we develop an adaptive "batch-means" stopping rule for determining when to terminate the micro-equilibration process.

6.
J Chem Phys ; 143(8): 084105, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26328816

ABSTRACT

Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.


Subject(s)
Molecular Dynamics Simulation , Entropy , Monte Carlo Method
7.
J Chem Phys ; 139(7): 074115, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23968080

ABSTRACT

In this paper, we focus on the development of new methods suitable for efficient and reliable coarse-graining of non-equilibrium molecular systems. In this context, we propose error estimation and controlled-fidelity model reduction methods based on Path-Space Information Theory, combined with statistical parametric estimation of rates for non-equilibrium stationary processes. The approach we propose extends the applicability of existing information-based methods for deriving parametrized coarse-grained models to Non-Equilibrium systems with Stationary States. In the context of coarse-graining it allows for constructing optimal parametrized Markovian coarse-grained dynamics within a parametric family, by minimizing information loss (due to coarse-graining) on the path space. Furthermore, we propose an asymptotically equivalent method-related to maximum likelihood estimators for stochastic processes-where the coarse-graining is obtained by optimizing the information content in path space of the coarse variables, with respect to the projected computational data from a fine-scale simulation. Finally, the associated path-space Fisher Information Matrix can provide confidence intervals for the corresponding parameter estimators. We demonstrate the proposed coarse-graining method in (a) non-equilibrium systems with diffusing interacting particles, driven by out-of-equilibrium boundary conditions, as well as (b) multi-scale diffusions and the corresponding stochastic averaging limits, comparing them to our proposed methodologies.

8.
Biophys J ; 94(5): 1551-64, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-17993499

ABSTRACT

The current understanding of how receptors diffuse and cluster in the plasma membrane is limited. Data from single-particle tracking and laser tweezer experiments have suggested that membrane molecule diffusion is affected by the presence of barriers dividing the membrane into corrals. Here, we have developed a stochastic spatial model to simulate the effect of corrals on the diffusion of molecules in the plasma membrane. The results of this simulation confirm that a fence barrier (the ratio of the transition probability for diffusion across a boundary to that within a corral) on the order of 10(3)-10(4) recreates the experimentally measured difference in diffusivity between artificial and natural plasma membranes. An expression for the macroscopic diffusivity of receptors on corralled membranes is derived to analyze the effects of the corral parameters on diffusion rate. We also examine whether the lattice model is an appropriate description of the plasma membrane and look at three different sets of boundary conditions that describe diffusion over the barriers and whether diffusion events on the plasma membrane may occur with a physically relevant length scale. Finally, we show that to observe anomalous (two-timescale) diffusion, one needs high temporal (microsecond) resolution along with sufficiently long (more than milliseconds) trajectories.


Subject(s)
Algorithms , Cell Membrane/chemistry , Computer Simulation , Receptors, Cell Surface/chemistry , Cell Membrane/metabolism , Diffusion , Kinetics , Models, Biological , Probability , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...