Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(42): 26870-26884, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30334027

ABSTRACT

A prototypical organic/inorganic interface is considered which is formed by vertical stacking of 20 para-sexiphenyl molecules physisorbed on a ZnO nano-cluster of 3903 atoms. Charge separation kinetics at the interface are investigated for their dependence on ultrafast optical excitation. In order to analyze the spatio-temporal evolution of the Frenkel exciton in the organic part and the formation of charge separated states a first principles parameterized Hamiltonian is introduced and the related time-dependent Schroedinger equation is solved. By determining the interface absorption spectrum the optically addressable states can be uncovered. The work continues our previous studies of J. Phys. Chem. Lett., 2018, 9, 209, but with a changed type of surface passivation. This prevents trapping of electrons close to the surface. Charge separated states are formed by direct optical excitation and also by exciton decay at the interface. Electron migration away from the interface into bulk regions becomes possible. The hole stays close to the interface for all excitation scenarios. Finally, it is demonstrated that energetic disorder is of minor influence.

2.
J Phys Chem Lett ; 9(1): 209-215, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29265820

ABSTRACT

Charge separation kinetics at a nanohybrid interface are investigated in their dependence on ultrafast optical excitation. A prototypical organic/inorganic interface is considered. It is formed by a vertical stacking of 20 para-sexiphenyl molecules physisorbed on a ZnO nanocluster of 3783 atoms. A first principle parametrized Hamiltonian is employed, and the photoinduced subpicosecond evolution of Frenkel-excitons in the organic part is analyzed besides the formation of charge separated states across the interface. The interface absorption spectrum is calculated. Together, the data indicate that the charge separation is based on the direct excitation of the charge separated states but also on the migration of created Frenkel excitons to the interface with subsequent decay. Further, the photoinduced interface dynamics are compared with data resulting from direct set-ups of an initially excited state. Mostly such set-ups lead to substantially different charge separation processes.

3.
J Chem Phys ; 146(3): 034107, 2017 Jan 21.
Article in English | MEDLINE | ID: mdl-28109221

ABSTRACT

The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

4.
J Phys Chem B ; 119(24): 7467-72, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-25531181

ABSTRACT

The coupling is investigated of Frenkel-like exciton states formed in a tubular dye aggregate (TDA) to Wannier-Mott-like excitations of a semiconductor nanocrystal (NC). A double well TDA of the cyanine dye C8S3 with a length of 63.4 nm and a diameter of 14.7 nm is considered. The TDA interacts with a spherical Cd819Te630 NC of 4.5 nm diameter. Electronic excitations of the latter are described in a tight-binding model of the electrons and holes combined with a configuration interaction scheme to consider their mutual Coulomb coupling. To achieve a proper description of TDA excitons, a recently determined structure has been used, the energy transfer coupling has been defined as a screened interaction of atomic centered transition charges, and the site energies of the dye molecules have been the subject of a polarization correction. Even if both nanoparticles are in direct contact, the energy transfer coupling between the exciton levels of the TDA and of the NC stays below 1 meV. It results in FRET-type energy transfer with rates somewhat larger than 10(9)/s. They coincide rather well with recent preliminary experiments.

5.
Phys Chem Chem Phys ; 16(25): 12949-58, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24852441

ABSTRACT

Photoinduced excitation energy transfer and accompanying charge separation are elucidated for a supramolecular system of a single fullerene covalently linked to six pyropheophorbide-a dye molecules. Molecular dynamics simulations are performed to gain an atomistic picture of the architecture and the surrounding solvent. Excitation energy transfer among the dye molecules and electron transfer from the excited dyes to the fullerene are described by a mixed quantum-classical version of the Förster rate and the semiclassical Marcus rate, respectively. The mean characteristic time of energy redistribution lies in the range of 10 ps, while electron transfer proceeds within 150 ps. In between, on a 20 to 50 ps time-scale, conformational changes take place in the system. This temporal hierarchy of processes guarantees efficient charge separation, if the structure is exposed to a solvent. The fast energy transfer can adopt the dye excitation to the actual conformation. In this sense, the probability to achieve charge separation is large enough since any dominance of unfavorable conformations that exhibit a large dye-fullerene distance is circumvented. And the slow electron transfer may realize an averaging with respect to different conformations. To confirm the reliability of our computations, ensemble measurements on the charge separation dynamics are simulated and a very good agreement with the experimental data is obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...