Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(13): 15667-15677, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35347981

ABSTRACT

Polymer hydrogels, water-laden 3D cross-linked networks, find broad application as advanced biomaterials and functional materials because of their biocompatibility, stimuli responsiveness, and affordability. The cross-linking density reports material properties such as elasticity, permeability, and swelling propensity. However, this critical design parameter can be challenging to template locally. Here, we report a continuous processing scheme that uses laminar flow to direct the organization of cross-linking density across a single sample. Dilute and concentrated poly(ethylene glycol) diacrylate solutions are fed into custom serpentine millifluidic devices. These feature a modular sequence of splitting, rotation, and recombination elements, which create patterned streamlines that serve as a template for hierarchical concentration distributions. Poly(acrylic acid) microgels impart viscoplasticity, which stabilizes layered flow during multiplication and ensures reliable advection. The devices produce structured, seamless filaments, which are then arranged into objects using 3D printing, and photopolymerized to secure the heterogeneous distribution. The flow-encoded, multiscale architecture provides mechanical contrast, which is demonstratively exploited to program robust and reversible shape transformations, potentially useful in soft actuator and sensor applications. The unique structures achieved, and the geometrically dictated, chemistry-agnostic operating principles used to achieve them, provides a new means to engineer hydrogels to suit a variety of applications.

2.
ACS Omega ; 3(8): 10391-10405, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459167

ABSTRACT

There are various ways of immobilizing carbonic anhydrase (CA) on solid materials. One of the final aims is to apply immobilized CA for the catalytic hydration of carbon dioxide (CO2) as a first step in the conversion of gaseous CO2 into solid products. The immobilization method investigated allows a straightforward, stable, and quantifiable immobilization of bovine erythrocyte carbonic anhydrase (BCA) on silicate surfaces. The method is based on the use of a water-soluble, polycationic second-generation dendronized polymer with on average 1000 repeating units, abbreviated as de-PG21000. Several copies of BCA were first covalently linked to de-PG21000 through stable bisaryl hydrazone (BAH) bonds. Then, the de-PG21000-BAH-BCA conjugates obtained were adsorbed noncovalently either on microscopy glass coverslips, inside glass micropipettes, or in porous glass fiber filters. The apparent density of the immobilized BCA on the glass surfaces was about 8-10 pmol/cm2. In all three cases, the immobilized enzyme was highly active and stable when tested with p-nitrophenyl acetate as a model enzyme substrate at room temperature. The micropipettes and the glass fiber filters were applied as flow-through systems for continuous operation at room temperature. In the case of the glass fiber filters, the filters were placed inside a homemade flow-through filter holder which allows flow-through runs with more than one filter connected in series. This offers the opportunity of increasing the substrate conversion by increasing the number of BCA-containing filters.

SELECTION OF CITATIONS
SEARCH DETAIL
...