Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 384: 129281, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37295476

ABSTRACT

The study aimed at zero-waste utilization of fish processing streams for cultivation of microalgae Galdieria sulphuraria. Wastewater from a fish processing facility, slam (mix of used fish feed and faeces), and dried pellet (sediments after enzymatic hydrolysis of rainbow trout) were investigated as potential sources of carbon, nitrogen, and phosphate for cultivation of G. sulphuraria. The pellet extract was found to support the growth of G. sulphuraria when appropriate diluted, at concentrations below 40 % (v/v). It was revealed that wastewater does not impact the growth negatively, however free amino nitrogen and carbon sources need to be supplied from another source. Therefore, only proteolyzed pellet extract (20 %, v/v) was selected for upscaling and a biomass concentration of 80 g L-1 (growth rate was 0.72 day-1) was achieved in a non-sterile fed-batch culture. Even though biomass was produced under non-sterile conditions no pathogens such as Salmonella sp. could be detected.


Subject(s)
Microalgae , Rhodophyta , Wastewater , Heterotrophic Processes , Biomass , Nitrogen , Aquaculture , Carbon , Plant Extracts
2.
Resour Conserv Recycl ; 190: 106831, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36874227

ABSTRACT

The modern food system is characterized with high environmental impact, which is in many cases associated with increased rates of animal production and overconsumption. The adoption of alternatives to meat proteins (insects, plants, mycoprotein, microalgae, cultured meat, etc.) might potentially influence the environmental impact and human health in a positive or negative way but could also trigger indirect impacts with higher consumption rates. Current review provides a condensed analysis on potential environmental impacts, resource consumption rates and unintended trade-offs associated with integration of alternative proteins in complex global food system in the form of meat substitutes. We focus on emissions of greenhouse gases, land use, non-renewable energy use and water footprint highlighted for both ingredients used for meat substitutes and ready products. The benefits and limitations of meat substitution are highlighted in relation to a weight and protein content. The analysis of the recent research literature allowed us to define issues, that require the attention of future studies.

3.
Foods ; 12(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36673514

ABSTRACT

Seafood processing creates enormous amounts of side-streams. This review deals with the use of seafood side-streams for transformation into valuable products and identifies suitable approaches for making use of it for different purposes. Starting at the stage of catching fish to its selling point, many of the fish parts, such as head, skin, tail, fillet cut-offs, and the viscera, are wasted. These parts are rich in proteins, enzymes, healthy fatty acids such as monounsaturated and polyunsaturated ones, gelatin, and collagen. The valuable biochemical composition makes it worth discussing paths through which seafood side-streams can be turned into valuable products. Drawbacks, as well as challenges of different aquacultures, demonstrate the importance of using the various side-streams to produce valuable compounds to improve economic performance efficiency and sustainability of aquaculture. In this review, conventional and novel utilization approaches, as well as a combination of both, have been identified, which will lead to the development of sustainable production chains and the emergence of new bio-based products in the future.

4.
Mar Drugs ; 20(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35200644

ABSTRACT

Docosahexaenoic acid (DHA) is one of the most important long-chain polyunsaturated fatty acids (LC-PUFAs), with numerous health benefits. Crypthecodinium cohnii, a marine heterotrophic dinoflagellate, is successfully used for the industrial production of DHA because it can accumulate DHA at high concentrations within the cells. Glycerol is an interesting renewable substrate for DHA production since it is a by-product of biodiesel production and other industries, and is globally generated in large quantities. The DHA production potential from glycerol, ethanol and glucose is compared by combining fermentation experiments with the pathway-scale kinetic modeling and constraint-based stoichiometric modeling of C. cohnii metabolism. Glycerol has the slowest biomass growth rate among the tested substrates. This is partially compensated by the highest PUFAs fraction, where DHA is dominant. Mathematical modeling reveals that glycerol has the best experimentally observed carbon transformation rate into biomass, reaching the closest values to the theoretical upper limit. In addition to our observations, the published experimental evidence indicates that crude glycerol is readily consumed by C. cohnii, making glycerol an attractive substrate for DHA production.


Subject(s)
Dinoflagellida/metabolism , Docosahexaenoic Acids/metabolism , Models, Theoretical , Biomass , Ethanol/metabolism , Fermentation , Glucose/metabolism , Glycerol/metabolism
5.
Bioresour Technol ; 348: 126800, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35121101

ABSTRACT

Large amounts of food are wasted and valuable contents are not utilized completely. Methods to process such wastes into biomass of defined composition automatically and in decentralized locations are lacking. Thus, this study presents a modular design for residue utilization and continuous production of the heterotrophic alga Galdieria sulphuraria. A life cycle and economic assessment are carried out on the hypothetical design to define whether the proposed system can be ecologically and economically viable. Producing one kg of dried biomass would cost 4.38 € and be associated with 3.8 kg CO2 eq emitted, 69.9 MJ of non-renewable energy use, and 0.09 m2 of land occupation. Sustainability is comparable to conventional protein sources, with further improvement foreseen through avoidance of drying. These results demonstrate how circular bioeconomy potentials of residues could be realized using heterotrophic G. sulphuraria. It highlights key issues of developing an environmentally and economically sustainable concept.


Subject(s)
Rhodophyta , Biomass , Food , Heterotrophic Processes , Rhodophyta/metabolism
7.
Bioresour Technol ; 337: 125477, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34320757

ABSTRACT

Non-sterile heterotrophic cultivation of Galdieria sulphuraria in presence of digestate as well as straw after hydrolysis was investigated. G. sulphuraria can be grown in pure digestate at rates of 0.9 day-1 with glucose. However, a proteolytic treatment of digestate resulted in increased growth rates (1.2 day-1) and doubled cell concentrations. Furthermore, G. sulphuraria can utilize glucose obtained after straw hydrolysis. Biomass yields in glucose limited cultures were around 0.9 g per g glucose, while only 0.2 g biomass was formed per g glucose in glucose sufficient cultures. Biomass composition (w/w) of G. sulphuraria grown in digestate supplemented with straw hydrolysate consisted of 20% carbohydrates, 37% proteins and 3% lipids. This study revealed the potential to utilize agricultural waste streams to form algal biomass rich in proteins and may pave the way to novel utilization strategies to be implemented in rural areas.


Subject(s)
Rhodophyta , Biomass , Heterotrophic Processes , Lipids
8.
Bioresour Technol ; 340: 125637, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34315124

ABSTRACT

The aim of this study was to perform a Life Cycle Assessment of a production process of 1 kg dry algal biomass powder (Galdieria sulphuraria) with 27 % (w/w) protein content for human consumption for optimizing the production regarding global warming potential and resource efficiency in combination with food waste utilization. It was investigated, underpinned by a comparison of the use of conventional glucose, whether and to what extent the environmental impact/global warming potential can be reduced by changing to food waste hydrolysate and how this can lead to a more sustainable use of resources and a sustainable development. Overall, the results showed that hydrolysis, along with freeze-drying, caused most of the overall impact. The carbon footprint associated with the use of hydrolyzed food waste was 11% higher than using conventional glucose and supplementary nutrients mainly driven by the high demand of energy for hydrolysis.


Subject(s)
Microalgae , Refuse Disposal , Animals , Food , Heterotrophic Processes , Humans , Life Cycle Stages
9.
Bioresour Technol ; 335: 125227, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33992913

ABSTRACT

Microalgae cultivation for food purposes could have high environmental impacts. The study performed life cycle assessment (LCA) of hypothetical model combining phototrophic and heterotrophic cultivations, exchanging produced gases (carbon dioxide from heterotrophic and oxygen from autotrophic) as a potential strategy to reduce the environmental impact of microalgae cultivation. The LCA indicated that the production of Galdieria sulphuraria in a combined cultivation system has environmental benefits compared with the separate phototrophic cultivation and an almost twice lower carbon footprint than phototrophic cultivation. The benefits are based on the lower volume of culture broth and consequently reduced energy demand as well as less demanding wastewater treatment of the heterotrophic cultivation. Such combination of cultivation activities could be recommended to the producers dealing with phototrophic cultivation as a sustainable strategy for the environmental impact reduction.


Subject(s)
Microalgae , Rhodophyta , Animals , Biomass , Heterotrophic Processes , Life Cycle Stages
10.
Appl Biochem Biotechnol ; 192(4): 1376-1385, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32809108

ABSTRACT

The aim of this mini-review with own results was an identification of techniques to suppress the growth of microbial contaminants under photo- and mixotrophic conditions. Techniques identified are the modification of environmental conditions, such as pH, oxygen, and nutrient concentrations, as well as the application of pulsed electric field, ultrasonication, and surfactants. In phototrophic cultivations, the mentioned techniques result in a decrease of number of predatory cells, but not in a complete removal. Measures to suppress the growth of contaminations (e.g., bacteria and fungi) in mixotrophic cultivations could not be identified. The co-cultivation of algae and fungi, however, was found to be beneficial for the utilization of unusual carbon compounds (e.g., phenolic compounds).


Subject(s)
Microalgae/microbiology , Coculture Techniques , Microalgae/drug effects , Microalgae/growth & development , Surface-Active Agents/pharmacology
11.
Bioresour Technol ; 306: 123175, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32192963

ABSTRACT

This work presents examples of non-sterile mixed culture fermentation of food waste with a cultivated indigenous consortium (IC) gained from food waste, which produces lactic and acetic acids, combined with Saccharomyces cerevisiae, which produces ethanol. All results are flanked by microbial analysis to monitor changes in microbial community. At pH 6 and inoculated with yeast or IC, or both mixed sugars conversion was equal to 71%, 51%, or 67%, respectively. Under pH unregulated conditions metabolic yields were 71%, 67%, or up to 81%. While final titer of acetic acid was not affected by pH (100-200 mM), ethanol and lactic acid titers were. Using mixed culture and pH 6, sugars were almost equally used for formation of ethanol and lactic acid (400-500 mM). However, under pH unregulated conditions 80% of the substrate was converted into ethanol (900-1000 mM).

12.
Adv Biochem Eng Biotechnol ; 173: 281-298, 2020.
Article in English | MEDLINE | ID: mdl-30270411

ABSTRACT

Sustainable chemistry is a broad framework that starts with the function that a chemical product is offering. Not only chemical but also economic and ethical aspects come into focus throughout the complete lifecycle of chemical products. Green chemistry is an important building block for sustainable chemistry and addresses the issue of greener synthesis and, to a certain degree, the more benign properties of chemicals. The principles of green chemistry clearly aim at making chemical reactions and processes more environmentally friendly. Aspects such as atom efficiency, energy efficiency, harmless reactants, renewable resources, and pollution prevention are considered. Despite the progress made toward a "greener" chemistry, biotechnological processes, as processes for the conversion of biomass into value-added products, have not been properly adapted to new developments. Processes used in industrial biotechnology are predominantly linear. This review elaborates on the potential contributions of green chemistry to industrial biotechnology and vice versa. Examples are presented of how green chemistry and biotechnology can be connected to make substrate supply, upstream and downstream processing, and product formation more sustainable. The chapter ends with a case study of adipic acid production from lignin to illustrate the importance of a strong connection between green chemistry and biotechnology.


Subject(s)
Biotechnology , Conservation of Natural Resources , Lignin , Biomass , Industry
13.
Waste Manag ; 102: 198-203, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31678806

ABSTRACT

An estimation of the economy of Hermetia illucens and Chlorella pyrenoidosa cultivations as food waste treatment with benefits was carried out. For both organisms, a process scale was assumed to treat 56.3 t of wet food waste per day, which is equivalent to the amount of food waste appearing in a catchment area of 141,000 inhabitants. Using hypothetical insect and heterotrophic microalgae cultivation processes, a daily production of 3.64 t and 7.14 t dried biomass, respectively, can be achieved. For the cultivation of H. illucens, equipment and daily operational costs were estimated at 79,358.15 € and 5,281.56 €, respectively. Equipment and operational costs for the C. pyrenoidosa cultivation was 50 and 6 times higher, respectively. The higher costs reflect the more complex and advanced process compared to H. illucens cultivation. The internal return rate for a plant lifetime of 20 times revealed an economic benefit when C. pyrenoidosa biomass is produced. Nevertheless, both processes were found economically feasible when dried biomass is directly commercialized as food without any further downstream processing. However, extraction and purification of special chemicals, such as unsaturated fatty acids and pigments, can significantly increase the revenue.


Subject(s)
Chlorella , Microalgae , Refuse Disposal , Animals , Biomass , Food , Heterotrophic Processes , Insecta , Wastewater
14.
Bioresour Technol ; 295: 122256, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31645308

ABSTRACT

Agricultural residues pose a valuable resource. Through microbial fermentations, a variety of products can be obtained, ranging from fuels to platform chemicals. Depending on the nature of the organic residue, pretreatment and hydrolysis are needed prior to fermentation in order to release fermentable sugars. Continuous set-ups are common for the production of methane or ethanol from lignocellulosic biomass, however, this does not apply for the fermentative generation of biochemicals, an approach that conserves chemical functionality present in biomass. Certainly, continuous set-ups could beneficially contribute to bioeconomy by providing techniques allowing the production of biochemicals in a sustainable and efficient way. This review summarizes research conducted on the continuous pretreatment, hydrolysis, and fermentation of lignocellulosic biomass, and particularly towards the production of the biobased molecules: Succinic and lactic acid.


Subject(s)
Ethanol , Lignin , Biomass , Fermentation , Hydrolysis
15.
Bioresour Technol ; 289: 121631, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31220764

ABSTRACT

Non-sterile lactic acid (LA) fermentation of highly viscous food waste was demonstrated in batch and continuous flow fermentations. With Streptococcus sp., an indigenous consortium, and/or applied glucoamylase, food waste was fermented without addition of external carbon or nitrogen sources. Experimental results were used for economic and energy evaluations under consideration of different catchment area sizes from 50,000 to 1,000,000 inhabitants. During batch mode, addition of glucoamylase resulted in a titer (after 24 h), yield, and productivity of 50 g L-1, 63%, and 2.93 g L-1h-1, respectively. While titer and yield were enhanced, productivity was lower during continuous operation and 69 g L-1, 86%, and 1.27 g L-1h-1 were obtained at a dilution rate of 0.44 d-1 when glucoamylase was added. Both batch and continuous flow fermentations were found economically profitable with food waste from 200,000 or more inhabitants.


Subject(s)
Food , Lactic Acid , Bioreactors , Fermentation , Glucan 1,4-alpha-Glucosidase , Nitrogen
16.
3 Biotech ; 9(7): 260, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31192085

ABSTRACT

Depending on the purpose and use, bioprocesses are carried out in order to reduce, maintain or increase the molar O/C ratio of biomass as the initial substrate. Cascade use considers the holistic and efficient use of biomass. In the current debate of biomass use, however, one may admit that an efficient use of biomass can further be based on the maintenance of initially present molar O/C ratio and functionality. In this regard, what compound should be formed that possesses highest functionality and similar molar O/C ratio as the substrate? How much energy should be spent on bioprocesses for the conversion of biomass under aerobic or anaerobic conditions? This study discusses and contributes to the efficiency assessment of aerobic and anaerobic bioprocesses based on chemical functionality and molar O/C ratio and their scale-depended energy need for creating appropriate environmental conditions for biological agents.

17.
Adv Biochem Eng Biotechnol ; 166: 373-410, 2019.
Article in English | MEDLINE | ID: mdl-28265703

ABSTRACT

Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.


Subject(s)
Biotechnology , Chemical Industry , Chemical Industry/methods , Chemical Industry/trends , Lactic Acid/biosynthesis , Microbiota , Organic Chemicals
18.
N Biotechnol ; 49: 43-47, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30098415

ABSTRACT

This communication elaborates on the use of seashell powder (SP) for the removal of phosphate from lactic acid-containing fermentation broth. Despite extensive past research regarding the application of SP for phosphate removal from wastewater, no information is available for solutions containing various organic compounds. In order to fill this knowledge gap, tests were performed with pure phosphate solution (PPS) and PPS containing 0.83 M of three alcohols, ethanol, propanol or 1,2-propanediol, or 0.83 M of three organic acids, acetic, propionic or lactic acid. Furthermore, a real fermentation broth (RFB) obtained from the fermentative production of lactic acid from food waste was tested. Using 4.8 g SP, more than 95% of phosphate, present at an initial concentration of 50 mg L-1, could be removed from PPS and PPS containing alcohols after 120 min. The presence of organic acids reduced the removal capacity of SP and only 55%-73% of the phosphate initially present was removed. The presence of lactic acid also substantially affected the removal of phosphate from RFB when 132 mg L-1 phosphate was initially present: after 120 min, only 28.6 mg L-1 of phosphate had been removed. The results indicate the use of SP for phosphate removal from fermentation broth, contributing to multi-component utilization of fermentation broth. However, the effects of respective fermentation products on removal capacity should first be tested.


Subject(s)
Animal Shells/chemistry , Fermentation , Phosphates/isolation & purification , Animals , Mytilus/chemistry , Powders , Solutions
19.
Metab Eng ; 47: 279-293, 2018 05.
Article in English | MEDLINE | ID: mdl-29548984

ABSTRACT

Cis,cis-muconic acid (MA) is a chemical that is recognized for its industrial value and is synthetically accessible from aromatic compounds. This feature provides the attractive possibility of producing MA from mixtures of aromatics found in depolymerized lignin, the most underutilized lignocellulosic biopolymer. Based on the metabolic pathway, the catechol (1,2-dihydroxybenzene) node is the central element of this type of production process: (i) all upper catabolic pathways of aromatics converge at catechol as the central intermediate, (ii) catechol itself is frequently generated during lignin pre-processing, and (iii) catechol is directly converted to the target product MA by catechol 1,2-dioxygenase. However, catechol is highly toxic, which poses a challenge for the bio-production of MA. In this study, the soil bacterium Pseudomonas putida KT2440 was upgraded to a fully genome-based host for the production of MA from catechol and upstream aromatics. At the core of the cell factories created was a designed synthetic pathway module, comprising both native catechol 1,2-dioxygenases, catA and catA2, under the control of the Pcat promoter. The pathway module increased catechol tolerance, catechol 1,2-dioxygenase levels, and catechol conversion rates. MA, the formed product, acted as an inducer of the module, triggering continuous expression. Cellular energy level and ATP yield were identified as critical parameters during catechol-based production. The engineered MA-6 strain achieved an MA titer of 64.2 g L-1 from catechol in a fed-batch process, which repeatedly regenerated the energy levels via specific feed pauses. The developed process was successfully transferred to the pilot scale to produce kilograms of MA at 97.9% purity. The MA-9 strain, equipped with a phenol hydroxylase, used phenol to produce MA and additionally converted o-cresol, m-cresol, and p-cresol to specific methylated variants of MA. This strain was used to demonstrate the entire value chain. Following hydrothermal depolymerization of softwood lignin to catechol, phenol and cresols, MA-9 accumulated 13 g L-1 MA and small amounts of 3-methyl MA, which were hydrogenated to adipic acid and its methylated derivative to polymerize nylon from lignin for the first time.


Subject(s)
Lignin/metabolism , Metabolic Engineering , Microorganisms, Genetically-Modified , Nylons , Pseudomonas putida , Sorbic Acid/analogs & derivatives , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Sorbic Acid/metabolism
20.
Appl Biochem Biotechnol ; 184(2): 733-745, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28842806

ABSTRACT

Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.


Subject(s)
Medical Waste Disposal/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...