Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 79(5): 260, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35474501

ABSTRACT

Osteoarthritis (OA) synovial membrane is mainly characterized by low-grade inflammation, hyperplasia with increased cell proliferation and fibrosis. We previously underscored a critical role for CEMIP in fibrosis of OA cartilage. However, its role in OA synovial membrane remains unknown. An in vitro model with fibroblast-like synoviocytes from OA patients and an in vivo model with collagenase-induced OA mice were used to evaluate CEMIP-silencing effects on inflammation, hyperplasia and fibrosis. Our results showed that i. CEMIP expression was increased in human and mouse inflamed synovial membrane; ii. CEMIP regulated the inflammatory response pathway and inflammatory cytokines production in vitro and in vivo; iii. CEMIP induced epithelial to mesenchymal transition pathway and fibrotic markers in vitro and in vivo; iv. CEMIP increased cell proliferation and synovial hyperplasia; v. CEMIP expression was increased by inflammatory cytokines and by TGF-ß signaling; vi. anti-fibrotic drugs decreased CEMIP expression. All these findings highlighted the central role of CEMIP in OA synovial membrane development and underscored that targeting CEMIP could be a new therapeutic approach.


Subject(s)
Epithelial-Mesenchymal Transition , Hyaluronoglucosaminidase , Osteoarthritis , Animals , Cytokines/metabolism , Fibrosis , Humans , Hyaluronoglucosaminidase/metabolism , Hyperplasia/metabolism , Inflammation/pathology , Mice , Osteoarthritis/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology
2.
J Clin Med ; 10(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830613

ABSTRACT

Osteoarthritis (OA) is recognized as being a cellular senescence-linked disease. Intra-articular injections of glucocorticoids (GC) are frequently used in knee OA to treat synovial effusion but face controversies about toxicity. We investigated the influence of GC on cellular senescence hallmarks and senescence induction in fibroblast-like synoviocytes (FLS) from OA patients and mesenchymal stem cells (MSC). METHODS: Cellular senescence was assessed via the proliferation rate, ß-galactosidase staining, DNA damage and CKI expression (p21, p16INK4A). Experimental senescence was induced by irradiation. RESULTS: The GC prednisolone did not induce an apparent senescence phenotype in FLS, with even higher proliferation, no accumulation of ß-galactosidase-positive cells nor DNA damage and reduction in p21mRNA, only showing the enhancement of p16INK4A. Prednisolone did not modify experimental senescence induction in FLS, with no modulation of any senescence parameters. Moreover, prednisolone did not induce a senescence phenotype in MSC: despite high ß-galactosidase-positive cells, no reduction in proliferation, no DNA damage and no CKI enhancement was observed. CONCLUSIONS: We provide reassuring in vitro data about the use of GC regarding cellular senescence involvement in OA: the GC prednisolone did not induce a senescent phenotype in OA FLS (the proliferation ratio was even higher) and in MSC and did not worsen cellular senescence establishment.

3.
Biochem J ; 478(16): 3145-3155, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34405859

ABSTRACT

Autophagy receptor p62/SQSTM1 signals a complex network that links autophagy-lysosomal system to proteasome. Phosphorylation of p62 on Serine 349 (P-Ser349 p62) is involved in a cell protective, antioxidant pathway. We have shown previously that P-Ser349 p62 occurs and is rapidly degraded during human synovial fibroblasts autophagy. In this work we observed that fingolimod (FTY720), used as a medication for multiple sclerosis, induced coordinated expression of p62, P-Ser349 p62 and inhibitory TFEB form, phosphorylated on Serine 211 (P-Ser211 TFEB), in human synovial fibroblasts. These effects were mimicked and potentiated by proteasome inhibitor MG132. In addition, FTY720 induced autophagic flux, LC3B-II up-regulation, Akt phosphorylation inhibition on Serine 473 but down-regulated TFEB, suggesting stalled autophagy. FTY720 decreased cytoplasmic fraction contained TFEB but induced TFEB in nuclear fraction. FTY720-induced P-Ser211 TFEB was mainly found in membrane fraction. Autophagy and VPS34 kinase inhibitor, autophinib, further increased FTY720-induced P-Ser349 p62 but inhibited concomitant expression of P-Ser211 TFEB. These results suggested that P-Ser211 TFEB expression depends on autophagy. Overexpression of GFP tagged TFEB in HEK293 cells showed concomitant expression of its phosphorylated form on Serine 211, that was down-regulated by autophinib. These results suggested that autophagy might be autoregulated through P-Ser211 TFEB as a negative feedback loop. Of interest, overexpression of p62, p62 phosphorylation mimetic (S349E) mutant and phosphorylation deficient mutant (S349A) in HEK293 cells markedly induced P-Ser211 TFEB. These results showed that p62 is involved in regulation of TFEB phosphorylation on Serine 211 but that this involvement does not depend on p62 phosphorylation on Serine 349.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fibroblasts/metabolism , Sequestosome-1 Protein/metabolism , Serine/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blotting, Western , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Fibroblasts/drug effects , Fingolimod Hydrochloride/pharmacology , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Leupeptins/pharmacology , Microscopy, Fluorescence , Mutation , Phosphorylation/drug effects , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sequestosome-1 Protein/genetics , Serine/genetics , Synovial Membrane/cytology , Synovial Membrane/metabolism
4.
Exp Mol Med ; 53(2): 210-222, 2021 02.
Article in English | MEDLINE | ID: mdl-33526813

ABSTRACT

Osteoarthritis is characterized by structural alteration of joints. Fibrosis of the synovial tissue is often detected and considered one of the main causes of joint stiffness and pain. In our earlier proteomic study, increased levels of vitronectin (VTN) fragment (amino acids 381-397) were observed in the serum of osteoarthritis patients. In this work, the affinity of this fragment for integrins and its putative role in TGF-ß1 activation were investigated. A competition study determined the interaction of VTN(381-397 a.a.) with αVß6 integrin. Subsequently, the presence of αVß6 integrin was substantiated on primary human fibroblast-like synoviocytes (FLSs) by western blot and flow cytometry. By immunohistochemistry, ß6 was detected in synovial membranes, and its expression showed a correlation with tissue fibrosis. Moreover, ß6 expression was increased under TGF-ß1 stimulation; hence, a TGF-ß bioassay was applied. We observed that αVß6 could mediate TGF-ß1 bioavailability and that VTN(381-397 a.a.) could prevent TGF-ß1 activation by interacting with αVß6 in human FLSs and increased α-SMA. Finally, we analyzed serum samples from healthy controls and patients with osteoarthritis and other rheumatic diseases by nano-LC/Chip MS-MS, confirming the increased expression of VTN(381-397 a.a.) in osteoarthritis as well as in lupus erythematosus and systemic sclerosis. These findings corroborate our previous observations concerning the overexpression of VTN(381-397 a.a.) in osteoarthritis but also in other rheumatic diseases. This fragment interacts with αVß6 integrin, a receptor whose expression is increased in FLSs from the osteoarthritic synovial membrane and that can mediate the activation of the TGF-ß1 precursor in human FLSs.


Subject(s)
Antigens, Neoplasm/metabolism , Integrins/metabolism , Osteoarthritis/complications , Protein Interaction Domains and Motifs , Synovitis/etiology , Synovitis/metabolism , Transforming Growth Factor beta1/metabolism , Vitronectin/metabolism , Aged , Antigens, Neoplasm/genetics , Biomarkers , Chromatography, Liquid , Disease Susceptibility , Female , Humans , Immunohistochemistry , Immunophenotyping , Inflammation Mediators/metabolism , Integrins/genetics , Male , Middle Aged , Osteoarthritis/etiology , Osteoarthritis/pathology , Peptides/chemistry , Peptides/metabolism , Protein Binding , Proteomics/methods , Synoviocytes/metabolism , Synoviocytes/pathology , Synovitis/blood , Synovitis/pathology , Tandem Mass Spectrometry , Vitronectin/chemistry
5.
Bone Res ; 8: 35, 2020.
Article in English | MEDLINE | ID: mdl-33083095

ABSTRACT

We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVß5, αVß3, and αVß6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for ß6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVß5, αVß3, and ß6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.

6.
Biochem Pharmacol ; 165: 49-65, 2019 07.
Article in English | MEDLINE | ID: mdl-30853397

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage degradation but also synovial membrane inflammation, osteophyte formation and subchondral bone sclerosis. Medical care is mainly based on alleviating pain symptoms, but to date, no effective drug can stop the disease progression. Cartilage is a tissue composed of only one cell type, chondrocytes, wrapped in a collagen rich extracellular matrix they synthesize. Chondrocytes can adopt different phenotypes in vivo and in vitro, defined by the collagen type they produce. Isolated from their matrix, chondrocytes present the particularity to dedifferentiate, producing fibroblastic type I and III collagens. With OA onset, chondrocytes undergo multiple changes, in terms of proliferation, viability, but also secretory profile. The acquisition of a hypertrophic phenotype (producing aberrant type X collagen and catabolic MMP-13 protease) by chondrocytes is well documented and contributes to OA development. However, it is increasingly believed that chondrocytes rather acquire a variety of degenerated phenotypes at the onset of OA, including a "dedifferentiated-like" phenotype that might also contribute to OA progression. In this review, we will (i) present molecular knowledge underlying dedifferentiation process, (ii) emphasize connections between dedifferentiation and OA and (iii) consider OA therapeutic strategies aiming at the maintenance of chondrogenic phenotype.


Subject(s)
Cell Dedifferentiation , Chondrocytes/cytology , Osteoarthritis/pathology , Animals , Cartilage/pathology , Cytokines/physiology , Humans , Osteoarthritis/drug therapy , Osteoarthritis/etiology , Signal Transduction , Transforming Growth Factor beta/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...