Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 3(8): 926-41, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9257651

ABSTRACT

Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/immunology , Saccharomyces cerevisiae Proteins , Amino Acid Sequence , Antibodies , Base Sequence , Chromatography, Affinity/methods , Cloning, Molecular , DNA, Complementary/isolation & purification , Electrophoresis/methods , HeLa Cells , Humans , Molecular Sequence Data , Molecular Weight , Nuclear Proteins/chemistry , Peptides , RNA Splicing Factors , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Saccharomyces cerevisiae/chemistry , Sequence Analysis , Sequence Homology, Amino Acid
2.
J Mol Biol ; 265(2): 87-94, 1997 Jan 17.
Article in English | MEDLINE | ID: mdl-9020971

ABSTRACT

All four spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 contain a common structural element called the snRNP core. This core is assembled from the common snRNP proteins and the small nuclear RNA (snRNA). We have used electron microscopy to study the structure of two intermediates of the snRNP core assembly pathway: (1) the (E.F.G) protein complex, which contains only the smallest common proteins E, F and G; and (2) the subscore of U5 snRNP, in which the U5 RNA and the common proteins D1 and D2 are bound to the (E.F.G) protein complex. The general structure of the subscore was found to resemble that of the complete snRNP core, which contains the components of the subscore plus the common proteins B/B' and D3. Both the complete snRNP core and subscore particles are globular, with diameters of 7 to 8 nm. They show a characteristic accumulation of stain at the centre. However, some subscore images showed nicked outlines not seen with the complete snRNP cores. The (E.F.G) protein complex appeared as a ring, with an outer diameter of about 7 nm and a central hole 2 nm across. The molecular dimensions of the E, F and G proteins imply that the thickness of the (E.F.G) ring structure is only about 2 nm. Comparison of the (E.F.G) structure complex with the snRNP core and subcore structures implicates that a flat side of the ring-shaped (E.F.G) complex provides the assembly site(s) for the other components of the snRNP during core assembly: first for the D1 and D2 proteins (and probably the snRNA) during subscore formation, and then for the B/B' and D3 proteins in the completion of the snRNP core particle.


Subject(s)
RNA, Small Nuclear/ultrastructure , Ribonucleoproteins, Small Nuclear/ultrastructure , Centrifugation, Density Gradient , HeLa Cells , Humans , Microscopy, Electron , Protein Conformation , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/ultrastructure , Ribonucleoprotein, U2 Small Nuclear/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/ultrastructure , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes
3.
EMBO J ; 15(9): 2256-69, 1996 May 01.
Article in English | MEDLINE | ID: mdl-8641291

ABSTRACT

Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.


Subject(s)
Ribonucleoproteins, Small Nuclear/metabolism , Biological Transport , Cell Nucleus/metabolism , HeLa Cells , Humans , Methylation , Precipitin Tests , Protein Biosynthesis
4.
Mol Cell Biol ; 14(6): 4160-72, 1994 Jun.
Article in English | MEDLINE | ID: mdl-8196654

ABSTRACT

The RNA components of small nuclear ribonucleoproteins (U snRNPs) possess a characteristic 5'-terminal trimethylguanosine cap structure (m3G cap). This cap is an important component of the nuclear localization signal of U snRNPs. It arises by hypermethylation of a cotranscriptionally added m7G cap. Here we describe an in vitro assay for the hypermethylation, which employs U snRNP particles reconstituted in vitro from purified components and subsequent analysis by m3G cap-specific immunoprecipitation. Complementation studies in vitro revealed that both cytosol and S-adenosylmethionine are required for the hypermethylation of an m7G-capped U1 snRNP reconstituted in vitro, indicating that the U1 snRNA-(guanosine-N2)-methyltransferase is a trans-active non-snRNP protein. Chemical modification revealed one cytoplasmic component required for hypermethylation and one located on the snRNP: these components have different patterns of sensitivity to modification by N-ethylmaleimide and iodoacetic acid (IAA). In the presence of cytosol and S-adenosylmethionine, an intact Sm core domain is a necessary and sufficient substrate for cap hypermethylation. These data, together with our observation that isolated native U1 snRNPs but not naked U1 RNA inhibit the trimethylation of in vitro-reconstituted U1 snRNP, indicate that the Sm core binds the methyltransferase specifically. Moreover, isolated native U2 snRNP also inhibits trimethylation of U1 snRNP, suggesting that other Sm-class U snRNPs might share the same methyltransferase. IAA modification of m7G-capped U1 snRNPs inhibited hypermethylation when they were microinjected into Xenopus oocytes and consequently also inhibited nuclear import. In contrast, modification with IAA of m3G-capped U1 snRNPs reconstituted in vitro did not interfere with their nuclear transport in oocytes. These data suggest that m3G cap formation and nuclear transport of U1 snRNPs are mediated by distinct factors, which require distinct binding sites on the Sm core of U1 snRNP.


Subject(s)
Methyltransferases/metabolism , RNA Caps/metabolism , RNA, Small Nuclear/biosynthesis , Ribonucleoprotein, U1 Small Nuclear/metabolism , Animals , Base Sequence , Binding Sites , Binding, Competitive , Cell Nucleus/metabolism , Cytosol/metabolism , Dithiothreitol/pharmacology , Ethylmaleimide/pharmacology , Female , Iodoacetates/pharmacology , Iodoacetic Acid , Methylation , Molecular Sequence Data , Oocytes/metabolism , RNA Caps/isolation & purification , RNA, Small Nuclear/genetics , RNA, Small Nuclear/isolation & purification , Ribonucleoprotein, U1 Small Nuclear/isolation & purification , S-Adenosylmethionine/metabolism , Transcription, Genetic , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...