Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 427: 128163, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34979384

ABSTRACT

Mercury (Hg), as one of the most frequently and globally occurring pollutants, is of major public health concern. Aquatic environments are the key compartment for Hg methylation as well as for its consequent bioaccumulation and biomagnification. This mesocosm study investigated the differences in Hg turnover, Hg distribution and bioaccumulation in two contrasting waterbodies: Panozzalacke (PL), an "average", oligotrophic European freshwater body and Lake Neusiedl (LN), an alkaline, saline, eutrophic, biologically highly productive lake. Mesocosm experiments were carried out with either water, water and sediment, and finally water, sediment and the macrophyte Ceratophyllum demersum from the respective waterbody. Hg2+ was added to the water phase and the Hg distribution over time was monitored in the compartments air, water, suspended particles, sediment and plants. The results show a much faster Hg turnover in LN compared to PL. Most striking is the significantly higher mercury bioaccumulation in macrophytes from LN and the significantly lower sedimentation rates there. We conclude that the specific physico-chemical and biological conditions in LN, e.g., alkalinity, sulfate content, dissolved carbon and high amount of particulate matter, lead to a rapid conversion of incoming mercury, accelerating bioaccumulation and potentially leading to unexpected mercury biomagnification in this lake. This has implications for other comparable waterbodies around the globe.


Subject(s)
Mercury , Water Pollutants, Chemical , Environmental Monitoring , Lakes , Mercury/analysis , Methylation , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 27(2): 1485-1498, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31748995

ABSTRACT

This is the first detailed report on the distribution of Ni, As, Sr and Ag in water, sediments and macrophytes from Lake Victoria, complemented with recent data on the heavy metals Cr, Cu, Zn, Cd and Pb. The study was conducted over an 11-month period at five sites in the Kenyan part of Lake Victoria: four sites in the Winam Gulf influenced by various anthropogenic pressures including a site near Kisumu City, and one in the main lake, perceived to have lesser direct anthropogenic influence. Compared with the main lake site, the water in Winam Gulf had significantly higher values for electrical conductivity and concentrations of dissolved components: organic carbon and bound nitrogen, as well as major and most trace elements. This contamination is also evident in surface sediments, which contained significantly higher levels of Cr, Zn, As, Ag, Cd and Pb compared with the main lake site. The mean levels of Cr, Cu, Zn, Ag and Pb exceeded probable effect levels at least at one of the gulf sites. The sediments at the Kisumu City site were classified as severely polluted with Cu (up to 259 mg/kg dw) and Pb (up to 1188 mg/kg dw). The sediment cores showed significantly higher levels of Cu, Zn, Ag, Cd and Pb in the surface (0-3 cm) versus subsurface (22-25 cm) layer at the Kisumu City site, indicating increasing pollution by these elements within the last 15 years. This is also the first report on trace elements in the emergent water plant Vossia cuspidata and submerged plant Ceratophyllum demersum from this lake. Even though the accumulation of most elements is comparable between C. demersum (whole plant) and V. cuspidata roots, the latter shows a better bioindicative potential. Contamination of the gulf with Ni, Cu, Zn, Ag, Cd and Pb is well mirrored in V. cuspidata roots. V. cuspidata strongly restricts the acropetal transport of trace elements, and hence using the shoots as fodder does not pose a risk to livestock.


Subject(s)
Geologic Sediments/chemistry , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical , Water Pollution, Chemical/analysis , Arsenic , Cadmium , Environmental Monitoring , Kenya , Lakes , Lead , Silver
3.
Sci Total Environ ; 659: 1158-1167, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31096329

ABSTRACT

The levels of Cr, Cu, Zn, Se, Ag, Cd, Hg, and Pb were determined in muscle and liver samples from 30 specimens of fish belonging to the species Labeobarbus aeneus, Labeobarbus kimberleyensis, and Labeo umbratus from the Vaal Dam. Health risks for human fish consumers were estimated using the target hazard quotient (THQ), the Se:Hg-ratio, and Se health benefit value (Se HBV). This is the first comprehensive report on Hg levels in fish from this lake. Mean concentrations ranging from 0.247-0.481 mg/kg dw in muscle and from 0.170-0.363 mg/kg dw in liver clearly show a contamination with this element. Although levels in muscle did not exceed maximum allowances for human consumption, a calculated THQ of 0.12 and 0.14 for the two Labeobarbus species, respectively, showed a potential risk due to additive effects. All Se:Hg-ratios as well as Se HBVs clearly suggested positive effects for fish consumers. Levels of Cu were remarkably high in the liver of L. umbratus, calling for further investigation on this species. Cadmium levels were above the maximum allowances for fish consumption in the liver of all three species (means between 0.190 and 0.460 mg/kg dw), but below the LOD in all muscle and intestine samples. This is also the first report of Ag in fish from South Africa. Levels were below the LOD in muscle, but well detectable in liver; they varied significantly between the two Labeobarbus species (0.054 ±â€¯0.030 and 0.037 ±â€¯0.016 mg/kg dw) compared to L. umbratus (1.92 ±â€¯0.83 mg/kg dw) and showed a positive correlation with Cu levels (63.7 ±â€¯17.0; 70.3 ±â€¯9.0 and 1300 ±â€¯823 mg/kg dw), possibly due to similar chemical affinities to metallothioneins. The detected Ag levels can serve as a basis to monitor the development of this new pollutant in aquatic environments in South Africa and worldwide.


Subject(s)
Cyprinidae/metabolism , Environmental Monitoring , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Animals , Food Contamination/statistics & numerical data , Humans , Mercury/metabolism , Selenium/metabolism , Silver/metabolism , South Africa
4.
Nanomaterials (Basel) ; 9(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678201

ABSTRACT

Water hardness not only constitutes a significant hazard for the functionality of water infrastructure but is also associated with health concerns. Commonly, water hardness is tackled with synthetic ion-exchange resins or membranes that have the drawbacks of requiring the awkward disposal of saturated materials and being based on fossil resources. In this work, we present a renewable nanopaper for the purpose of water softening prepared from phosphorylated TEMPO-oxidized cellulose nanofibrils (PT-CNF). Nanopapers were prepared from CNF suspensions in water (PT-CNF nanopapers) or low surface tension organic liquids (ethanol), named EPT-CNF nanopapers, respectively. Nanopaper preparation from ethanol resulted in a significantly increased porosity of the nanopapers enabling much higher permeances: more than 10,000× higher as compared to nanopapers from aqueous suspensions. The adsorption capacity for Ca2+ of nanopapers from aqueous suspensions was 17 mg g-1 and 5 mg g-1 for Mg2+; however, EPT-CNF nanopapers adsorbed more than 90 mg g-1 Ca2+ and almost 70 mg g-1 Mg2+. The higher adsorption capacity was a result of the increased accessibility of functional groups in the bulk of the nanopapers caused by the higher porosity of nanopapers prepared from ethanol. The combination of very high permeance and adsorption capacity constitutes a high overall performance of these nanopapers in water softening applications.

5.
Environ Sci Pollut Res Int ; 24(24): 19767-19776, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28685334

ABSTRACT

Lake Turkana and Lake Naivasha are two freshwater lakes in the Kenyan Rift Valley that differ significantly in water chemistry and anthropogenic influence: Lake Turkana is believed to be rather pristine and unpolluted, but a previous study has shown rather high levels of Li, Zn, and Cd in the migratory fish species Hydrocynus forskahlii, questioning this pristine status. Lake Naivasha is heavily influenced by agricultural activity in its catchment area and by direct water use, and high levels of metal pollutants have been reported in fish. This study presents the distribution of nine important trace elements in liver and muscle of the nonmigratory red belly tilapia Tilapia zillii from Lake Turkana and from Lake Naivasha (before and after a significant rise in water level due to as yet not fully understood reasons). In addition, trace element levels in the common carp Cyprinus carpio from Lake Naivasha are presented. Metal concentrations measured in the liver and muscle of T. zillii collected in Lake Turkana confirm the pristine status of the study site, but contrast with the results obtained for the migratory H. forskahlii. Comparing T. zillii from the two lakes reveals a clear difference in accumulation patterns between essential and nonessential trace elements: physiologically regulated essential elements are present in a very similar range in fish from both lakes, while levels of nonessential metals reflect short- or long-term exposure to those elements. The comparison of trace element concentrations in the fish samples from Lake Naivasha showed lower levels of most trace elements after the significant increase of the water level. This study demonstrates that fish are valuable bioindicators for evaluating trace element pollution even in contrasting lakes as long as the way-of-life habits of the species are taken into account.


Subject(s)
Environmental Biomarkers , Environmental Monitoring/methods , Fishes/metabolism , Lakes/chemistry , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Kenya , Liver/chemistry , Muscles/chemistry
6.
Sci Total Environ ; 580: 670-676, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27964989

ABSTRACT

A total of 77 specimens of the mallard Anas platyrhynchos were sampled from the eastern part of Austria before the ban on lead gun shot for hunting water fowl. Samples of muscle and liver were analyzed for their content of Cr, Cu, Zn, Ag, Cd, Hg and Pb using atomic absorption spectrometry. In addition the Hg content of feather samples from this aquatic bird species was evaluated. Results generally show higher concentrations of the metals in the liver compared to muscle; for mercury the concentrations were feathers>liver>muscle. Elevated, in some cases critical concentrations of Cr, Cu, Cd, Hg and Pb were measured. Levels of Ag were recorded for the first time for this species from Europe, providing basic information for future evaluation of this upcoming pollutant in aquatic environments.


Subject(s)
Ducks , Environmental Monitoring , Metals, Heavy/analysis , Animals , Austria , Environmental Pollutants/analysis , Feathers/chemistry , Liver/chemistry , Muscles/chemistry
7.
Bull Environ Contam Toxicol ; 95(3): 286-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26193834

ABSTRACT

This study presents the distribution of 17 major and trace elements in surface water, sediments and fish tissues from Lake Turkana, Kenya. Eight sediment and ten water samples from the west bank of the lake, as well as 34 specimens of the elongate tigerfish Hydrocynus forskahlii caught in that region were examined. It is the first report for Li, Rb, Sr, Mo from the lake and the first report on most of the trace elements for this fish species. The concentrations of elements in the water and sediments showed no sign of pollution. In fish muscle, Li, Zn and Cd showed relatively high abundances, with mean concentrations of 206, 427 and 0.56 mg/kg dw, respectively. The calculated target hazard quotient values for Li, Zn, Sr and Cd were 138.7, 1.9, 4.1 and 0.76, respectively; therefore the consumption of these fish poses a health risk to humans in the area.


Subject(s)
Characiformes/metabolism , Lakes/chemistry , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Humans , Kenya , Metals, Heavy/metabolism , Risk Assessment , Trace Elements/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...