Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(11): 2196-2202, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35266708

ABSTRACT

Experimental validation of theoretical models for protein electrostatics remains rare. Recently, we have developed a paramagnetic NMR-based method for de novo determination of effective near-surface electrostatic potentials, which allows for straightforward examination of electrostatic models for biomolecules. In the current work, we expand this method and demonstrate that effective near-surface electrostatic potentials can readily be determined from 1H paramagnetic relaxation enhancement (PRE) data for protein CαH and CH3 groups. The experimental data were compared with those predicted from the Poisson-Boltzmann theory. The impact of structural dynamics on the effective near-surface electrostatic potentials was also assessed. The agreement between the experimental and theoretical data was particularly good for methyl 1H nuclei. Compared to the conventional pKa-based validation, our paramagnetic NMR-based approach can provide a far larger number of experimental data that can directly be used to examine the validity of theoretical electrostatic models for proteins.


Subject(s)
Magnetic Resonance Imaging , Proteins , Magnetic Resonance Spectroscopy , Models, Molecular , Proteins/chemistry , Static Electricity
2.
Anal Chem ; 94(5): 2444-2452, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35080384

ABSTRACT

Counterions are vital for the structure and function of biomolecules. However, the behavior of counterions remains elusive due to the difficulty in characterizing mobile ions. Here, we demonstrate that the dynamics of cations around biological macromolecules can be revealed by 23Na diffusion nuclear magnetic resonance (NMR) spectroscopy. NMR probe hardware capable of generating strong magnetic field gradients enables 23Na NMR-based diffusion measurements for Na+ ions in solutions of biological macromolecules and their complexes. The dynamic properties of Na+ ions interacting with the macromolecules can be investigated using apparent 23Na diffusion coefficients measured under various conditions. Our diffusion data clearly show that Na+ ions retain high mobility within the ion atmosphere around DNA. The 23Na diffusion NMR method also permits direct observation of the release of Na+ ions from nucleic acids upon protein-nucleic acid association. The entropy change due to the ion release can be estimated from the diffusion data.


Subject(s)
DNA , Sodium , Cations , DNA/chemistry , Diffusion , Magnetic Resonance Spectroscopy/methods , Sodium/chemistry
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161285

ABSTRACT

Electrostatic potentials computed from three-dimensional structures of biomolecules by solving the Poisson-Boltzmann equation are widely used in molecular biophysics, structural biology, and medicinal chemistry. Despite the approximate nature of the Poisson-Boltzmann theory, validation of the computed electrostatic potentials around biological macromolecules is rare and methodologically limited. Here, we present a unique and powerful NMR method that allows for straightforward and extensive comparison with electrostatic models for biomolecules and their complexes. This method utilizes paramagnetic relaxation enhancement arising from analogous cationic and anionic cosolutes whose spatial distributions around biological macromolecules reflect electrostatic potentials. We demonstrate that this NMR method enables de novo determination of near-surface electrostatic potentials for individual protein residues without using any structural information. We applied the method to ubiquitin and the Antp homeodomain-DNA complex. The experimental data agreed well with predictions from the Poisson-Boltzmann theory. Thus, our experimental results clearly support the validity of the theory for these systems. However, our experimental study also illuminates certain weaknesses of the Poisson-Boltzmann theory. For example, we found that the theory predicts stronger dependence of near-surface electrostatic potentials on ionic strength than observed in the experiments. Our data also suggest that conformational flexibility or structural uncertainties may cause large errors in theoretical predictions of electrostatic potentials, particularly for highly charged systems. This NMR-based method permits extensive assessment of near-surface electrostatic potentials for various regions around biological macromolecules and thereby may facilitate improvement of the computational approaches for electrostatic potentials.


Subject(s)
Magnetic Resonance Spectroscopy , Static Electricity , Cations , DNA/chemistry , Homeodomain Proteins/chemistry , Models, Molecular , Molecular Conformation , Osmolar Concentration , Surface Properties
4.
J Mol Biol ; 433(18): 167122, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34181980

ABSTRACT

Highly negatively charged segments containing only aspartate or glutamate residues ("D/E repeats") are found in many eukaryotic proteins. For example, the C-terminal 30 residues of the HMGB1 protein are entirely D/E repeats. Using nuclear magnetic resonance (NMR), fluorescence, and computational approaches, we investigated how the D/E repeats causes the autoinhibition of HMGB1 against its specific binding to cisplatin-modified DNA. By varying ionic strength in a wide range (40-900 mM), we were able to shift the conformational equilibrium between the autoinhibited and uninhibited states toward either of them to the full extent. This allowed us to determine the macroscopic and microscopic equilibrium constants for the HMGB1 autoinhibition at various ionic strengths. At a macroscopic level, a model involving the autoinhibited and uninhibited states can explain the salt concentration-dependent binding affinity data. Our data at a microscopic level show that the D/E repeats and other parts of HMGB1 undergo electrostatic fuzzy interactions, each of which is weaker than expected from the macroscopic autoinhibitory effect. This discrepancy suggests that the multivalent nature of the fuzzy interactions enables strong autoinhibition at a macroscopic level despite the relatively weak intramolecular interaction at each site. Both experimental and computational data suggest that the D/E repeats interact preferentially with other intrinsically disordered regions (IDRs) of HMGB1. We also found that mutations mimicking post-translational modifications relevant to nuclear export of HMGB1 can moderately modulate DNA-binding affinity, possibly by impacting the autoinhibition. This study illuminates a functional role of the fuzzy interactions of D/E repeats.


Subject(s)
HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/metabolism , Intrinsically Disordered Proteins/antagonists & inhibitors , Intrinsically Disordered Proteins/metabolism , Static Electricity , Binding Sites , DNA/chemistry , DNA/metabolism , HMGB1 Protein/chemistry , Humans , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372141

ABSTRACT

The molecular properties of proteins are influenced by various ions present in the same solution. While site-specific strong interactions between multivalent metal ions and proteins are well characterized, the behavior of other ions that are only weakly interacting with proteins remains elusive. In the current study, using NMR spectroscopy, we have investigated anion-protein interactions for three proteins that are similar in size but differ in overall charge. Using a unique NMR-based approach, we quantified anions accumulated around the proteins. The determined numbers of anions that are electrostatically attracted to the charged proteins were notably smaller than the overall charge valences and were consistent with predictions from the Poisson-Boltzmann theory. This NMR-based approach also allowed us to measure ionic diffusion and characterize the anions interacting with the positively charged proteins. Our data show that these anions rapidly diffuse while bound to the proteins. Using the same experimental approach, we observed the release of the anions from the protein surface upon the formation of the Antp homeodomain-DNA complex. Using paramagnetic relaxation enhancement (PRE), we visualized the spatial distribution of anions around the free proteins and the Antp homeodomain-DNA complex. The obtained PRE data revealed the localization of anions in the vicinity of the highly positively charged regions of the free Antp homeodomain and provided further evidence of the release of anions from the protein surface upon the protein-DNA association. This study sheds light on the dynamic behavior of anions that electrostatically interact with proteins.


Subject(s)
Anions/chemistry , Ions/chemistry , Proteins/chemistry , Aprotinin/chemistry , Binding Sites/physiology , DNA-Binding Proteins/chemistry , Diffusion , Magnetic Resonance Spectroscopy/methods , Protein Binding/physiology , Static Electricity , Ubiquitin/chemistry
6.
J Biomol NMR ; 74(8-9): 421-429, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32683519

ABSTRACT

A major driving force for protein-nucleic acid association is electrostatic interactions via ion pairs of the positively charged basic side chains and negatively charged phosphates. For a better understanding of how proteins scan DNA and recognize particular signatures, it is important to gain atomic-level insight into the behavior of basic side chains at the protein-DNA interfaces. NMR spectroscopy is a powerful tool for investigating the structural, dynamic, and kinetic aspects of protein-DNA interactions. However, resonance assignment of basic side-chain cationic moieties at the molecular interfaces remains to be a major challenge. Here, we propose a fast, robust, and inexpensive approach that greatly facilitates resonance assignment of interfacial moieties and also allows for kinetic measurements of protein translocation between two DNA duplexes. This approach utilizes site-specific incorporation of racemic phosphorothioate at the position of a phosphate that interacts with a protein side chain. This modification retains the electric charge of phosphate and therefore is mild, but causes significant chemical shift perturbations for the proximal protein side chains, which facilitates resonance assignment. Due to the racemic nature of the modification, two different chemical shifts are observed for the species with different diastereomers RP and SP of the incorporated phosphorothioate group. Kinetic information on the exchange of the protein molecule between RP and SP DNA duplexes can be obtained by 15Nz exchange spectroscopy. We demonstrate the applications of this approach to the Antennapedia homeodomain-DNA complex and the CREB1 basic leucine-zipper (bZIP)-DNA complex.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Macromolecular Substances/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphates/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Interaction Domains and Motifs
7.
J Phys Chem B ; 124(6): 1065-1070, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31958014

ABSTRACT

Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.


Subject(s)
DNA/chemistry , Hydroxyl Radical/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphates/chemistry , Tyrosine/chemistry , Hydrogen Bonding , Molecular Structure , Particle Size , Surface Properties
8.
Angew Chem Int Ed Engl ; 59(4): 1465-1468, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31743557

ABSTRACT

Due to a high density of negative charges on its surface, DNA condenses cations as counterions, forming the so-called "ion atmosphere". Although the release of counterions upon DNA-protein association has been postulated to have a major contribution to the binding thermodynamics, this release remains to be confirmed through a direct observation of the ions. Herein, we report the characterization of the ion atmosphere around DNA using NMR spectroscopy and directly detect the release of counterions upon DNA-protein association. NMR-based diffusion data reveal the highly dynamic nature of counterions within the ion atmosphere around DNA. Counterion release is observed as an increase in the apparent ionic diffusion coefficient, which directly provides the number of counterions released upon DNA-protein association.


Subject(s)
DNA/chemistry , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Humans
9.
J Phys Chem B ; 123(17): 3706-3710, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30963768

ABSTRACT

Due to chemical exchange, the mobility of histidine (His) side chains of proteins is typically difficult to analyze by NMR spectroscopy. Using an NMR approach that is uninfluenced by chemical exchange, we investigated internal motions of the His imidazole NH groups that directly interact with DNA phosphates in the Egr-1 zinc-finger-DNA complex. In this approach, the transverse and longitudinal cross-correlation rates for 15N chemical shift anisotropy and 15N-1H dipole-dipole relaxation interference were analyzed together with 15N longitudinal relaxation rates and heteronuclear Overhauser effect data at two magnetic field strengths. We found that the zinc-coordinating His side chains directly interacting with DNA phosphates are strongly restricted in mobility. This makes a contrast to the arginine and lysine side chains that retain high mobility despite their interactions with DNA phosphates in the same complex. The entropic effects of side-chain mobility on the molecular association are discussed.


Subject(s)
DNA/chemistry , Histidine/analysis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Nitrogen Isotopes , Particle Size , Surface Properties , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...