Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Gut Microbes ; 11(1): 32-50, 2020.
Article in English | MEDLINE | ID: mdl-31179826

ABSTRACT

Iron deficiency, a common comorbidity of gastrointestinal inflammatory disorders such as inflammatory bowel diseases (IBD), is often treated with oral iron supplementation. However, the safety of oral iron supplementation remains controversial because of its association with exacerbated disease activity in a subset of IBD patients. Because iron modulates bacterial growth and function, one possible mechanism by which iron may exacerbate inflammation in susceptible hosts is by modulating the intestinal microbiota. We, therefore, investigated the impact of dietary iron on the intestinal microbiota, utilizing the conventionalization of germ-free mice as a model of a microbial community in compositional flux to recapitulate the instability of the IBD-associated intestinal microbiota. Our findings demonstrate that altering intestinal iron availability during community assembly modulated the microbiota in non-inflamed wild type (WT) and colitis-susceptible interleukin-10-deficient (Il10-/-) mice. Depletion of luminal iron availability promoted luminal compositional changes associated with dysbiotic states irrespective of host genotype, including an expansion of Enterobacteriaceae such as Escherichia coli. Mechanistic in vitro growth competitions confirmed that high-affinity iron acquisition systems in E. coli enhance its abundance over other bacteria in iron-restricted conditions, thereby enabling pathobiont iron scavenging during dietary iron restriction. In contrast, distinct luminal community assembly was observed with dietary iron supplementation in WT versus Il10-/- mice, suggesting that the effects of increased iron on the microbiota differ with host inflammation status. Taken together, shifts in dietary iron intake during community assembly modulate the ecological structure of the intestinal microbiota and is dependent on host genotype and inflammation status.


Subject(s)
Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/microbiology , Intestines/microbiology , Iron, Dietary/pharmacology , Animals , Colitis/drug therapy , Colitis/genetics , Colon/microbiology , Disease Models, Animal , Disease Susceptibility , Dysbiosis , Enterobacteriaceae/drug effects , Escherichia coli/drug effects , Genetic Predisposition to Disease , Inflammation/genetics , Inflammation/microbiology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Interleukin-10/genetics , Intestines/pathology , Mice , Mice, Transgenic
2.
Proc Natl Acad Sci U S A ; 116(52): 26157-26166, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31811024

ABSTRACT

The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of Bacteroides fragilis is the model symbiotic immunomodulatory molecule. Here we demonstrate that PSA-dependent immunomodulation requires the Toll-like receptor (TLR) 2/1 heterodimer in cooperation with Dectin-1 to initiate signaling by the downstream phosphoinositide 3-kinase (PI3K) pathway, with consequent CREB-dependent transcription of antiinflammatory genes, including antigen presentation and cosignaling molecules. High-resolution LC-MS/MS analysis of PSA identified a previously unknown small molecular-weight, covalently attached bacterial outer membrane-associated lipid that is required for activation of antigen-presenting cells. This archetypical commensal microbial molecule initiates a complex collaborative integration of Toll-like receptor and C-type lectin-like receptor signaling mechanisms culminating in the activation of the antiinflammatory arm of the PI3K pathway that serves to educate CD4+ Tregs to produce the immunomodulatory cytokine IL-10. Immunomodulation is a key function of the microbiome and is a focal point for developing new therapeutic agents.

3.
Cell Host Microbe ; 26(6): 764-778.e5, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31757768

ABSTRACT

The human gut virome is thought to significantly impact the microbiome and human health. However, most virome analyses have been performed on a limited fraction of known viruses. Using whole-virome analysis on a published keystone inflammatory bowel disease (IBD) cohort and an in-house ulcerative colitis dataset, we shed light on the composition of the human gut virome in IBD beyond this identifiable minority. We observe IBD-specific changes to the virome and increased numbers of temperate phage sequences in individuals with Crohn's disease. Unlike prior database-dependent methods, no changes in viral richness were observed. Among IBD subjects, the changes in virome composition reflected alterations in bacterial composition. Furthermore, incorporating both bacteriome and virome composition offered greater classification power between health and disease. This approach to analyzing whole virome across cohorts highlights significant IBD signals, which may be crucial for developing future biomarkers and therapeutics.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases/virology , Metagenomics , Bacteria/classification , Bacteria/genetics , Bacteriophages/classification , Bacteriophages/genetics , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/virology , Crohn Disease/microbiology , Crohn Disease/virology , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/microbiology , Male , Viruses/classification , Viruses/genetics
4.
PLoS One ; 14(11): e0223918, 2019.
Article in English | MEDLINE | ID: mdl-31710624

ABSTRACT

BACKGROUND & AIMS: Originally believed to be primarily a disorder of T-cell signaling, evidence shows that macrophage-lineage cells also contribute to the pathogenesis of Crohn's disease (CD). Colony stimulating factor-1 (CSF-1) is a key regulator of the macrophage lineage, but its role in CD has not been well established. We examined transcriptional data from CD mucosa for evidence of CSF-1 pathway activation and tested JNJ-40346527 (PRV-6527), a small molecule inhibitor of CSF-1 receptor kinase (CSF-1R), for its ability to inhibit disease indices in murine colitis. METHODS: A CSF-1 pathway gene set was created from microarray data of human whole blood cultured ex vivo with CSF-1 and compared to a TNFα-induced gene set generated from epithelial-lineage cells. Gene set variation analysis was performed using existing Crohn's mucosa microarray data comparing patients who either responded or failed to respond to anti-TNFα therapy. Commencing day 14 or day 21, mice with T-cell transfer colitis were treated with vehicle or JNJ-40346527 until study termination (day 42). Endpoints included colon weight/length ratios and histopathology scores, and macrophage and T cells were assessed by immunohistochemistry. Mucosal gene expression was investigated using RNAseq. RESULTS: Both the CSF-1 and the TNFα gene sets were enriched in the colonic mucosal transcriptomes of Crohn's disease and in mouse colitis, and expression of both gene sets was highest in patients who did not respond to anti-TNFα therapy. In these patients neither set was reduced by therapy. In the mouse model, JNJ-40346527 inhibited the increase in colon weight/length ratio by ∼50%, reduced histological disease scores by ∼60%, and reduced F4/80+ mononuclear cell and CD3+ lymphocyte numbers. RNAseq analysis confirmed the CSF-1 gene set was sharply reduced in treated mice, as were gene sets enriched in "M1" inflammatory and "M0" resident macrophages and in activated T cells. CONCLUSIONS: CSF-1 biology is activated in Crohn's disease and in murine T cell transfer colitis. Inhibition of CSF-1R by JNJ-40346527 was associated with attenuated clinical disease scores and reduced inflammatory gene expression in mice. These data provide rationale for testing JNJ-40346527 (PRV-6527) in human inflammatory bowel disease.


Subject(s)
Colitis/drug therapy , Imidazoles/pharmacology , Intestinal Mucosa/drug effects , Macrophages/drug effects , Macrophages/immunology , Pyridines/pharmacology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , T-Lymphocytes/pathology , Animals , Colitis/immunology , Colitis/pathology , Dose-Response Relationship, Drug , Gene Expression Profiling , Humans , Imidazoles/therapeutic use , Inflammation/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Signal Transduction/drug effects , T-Lymphocytes/drug effects
5.
Cells ; 8(10)2019 09 21.
Article in English | MEDLINE | ID: mdl-31546615

ABSTRACT

The phosphoinositide 3-kinase catalytic subunit p110δ (PI3Kδ) gene maps to a human inflammatory bowel diseases (IBD) susceptibility locus, and genetic deletion of PI3Kδ signaling causes spontaneous colitis in mice. However, little is known regarding the role of PI3Kδ on IL-10-producing B cells that help regulate mucosal inflammation in IBD. We investigated the role of PI3Kδ signaling in B cell production of IL-10, following stimulation by resident bacteria and B cell regulatory function against colitis. In vitro, B cells from PI3KδD910A/D910A mice or wild-type B cells treated with PI3K specific inhibitors secreted significantly less IL-10 with greater IL-12p40 following bacterial stimulation. These B cells failed to suppress inflammatory cytokines by co-cultured microbiota-activated macrophages or CD4+ T cells. In vivo, co-transferred wild-type B cells ameliorated T cell-mediated colitis, while PI3KδD910A/D910A B cells did not confer protection from mucosal inflammation. These results indicate that PI3Kδ-signaling mediates regulatory B cell immune differentiation when stimulated with resident microbiota or their components, and is critical for induction and regulatory function of IL-10-producing B cells in intestinal homeostasis and inflammation.


Subject(s)
B-Lymphocytes/physiology , Class I Phosphatidylinositol 3-Kinases/physiology , Enteritis/genetics , Interleukin-10/metabolism , Microbiota/physiology , Animals , B-Lymphocytes/metabolism , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/genetics , Enteritis/metabolism , Enteritis/microbiology , Enteritis/pathology , Inflammation/genetics , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interleukin-10/pharmacology , Intestines/drug effects , Intestines/microbiology , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/physiology
6.
Inflamm Bowel Dis ; 25(Suppl 2): S13-S23, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31095702

ABSTRACT

Environmental triggers is part of five focus areas of the Challenges in IBD research document, which also includes preclinical human IBD mechanisms, novel technologies, precision medicine and pragmatic clinical research. The Challenges in IBD research document provides a comprehensive overview of current gaps in inflammatory bowel diseases (IBD) research and delivers actionable approaches to address them. It is the result of a multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient centric research prioritization. In particular, the environmental triggers section is focused on the main research gaps in elucidating causality of environmental factors in IBD. Research gaps were identified in: 1) epidemiology of exposures; 2) identification of signatures of biological response to exposures; and 3) mechanisms of how environmental exposures drive IBD. To address these gaps, the implementation of longitudinal prospective studies to determine disease evolution and identify sub-clinical changes in response to exposures is proposed. This can help define critical windows of vulnerability and risk prediction. In addition, systems biology analysis and in silico modeling were proposed as approaches to integrate the IBD exposome for the identification of biological signatures of response to exposures, and to develop prediction models of the effects of environmental factors in driving disease activity and response to therapy. This research could lead to identification of biomarkers of exposures and new modalities for therapeutic intervention. Finally, hypothesis-driven mechanistic studies to understand gene-environment interactions and to validate causality of priority factors should be performed to determine how environment influences clinical outcomes.


Subject(s)
Diet/adverse effects , Environmental Exposure/adverse effects , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/pathology , Gastrointestinal Microbiome , Gene-Environment Interaction , Humans , Life Style , Risk Factors
8.
Nat Immunol ; 20(3): 374, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30705416

ABSTRACT

In the version of this article initially published, a word ("neutraling") in sentence 2 of paragraph 5 is incorrect. The correct phrase is "...neutralizing properties...". The error has been corrected in the HTML and PDF version of the article.

13.
Nat Med ; 23(5): 579-589, 2017 May.
Article in English | MEDLINE | ID: mdl-28368383

ABSTRACT

Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex chronic inflammatory conditions of the gastrointestinal tract that are driven by perturbed cytokine pathways. Anti-tumor necrosis factor-α (TNF) antibodies are mainstay therapies for IBD. However, up to 40% of patients are nonresponsive to anti-TNF agents, which makes the identification of alternative therapeutic targets a priority. Here we show that, relative to healthy controls, inflamed intestinal tissues from patients with IBD express high amounts of the cytokine oncostatin M (OSM) and its receptor (OSMR), which correlate closely with histopathological disease severity. The OSMR is expressed in nonhematopoietic, nonepithelial intestinal stromal cells, which respond to OSM by producing various proinflammatory molecules, including interleukin (IL)-6, the leukocyte adhesion factor ICAM1, and chemokines that attract neutrophils, monocytes, and T cells. In an animal model of anti-TNF-resistant intestinal inflammation, genetic deletion or pharmacological blockade of OSM significantly attenuates colitis. Furthermore, according to an analysis of more than 200 patients with IBD, including two cohorts from phase 3 clinical trials of infliximab and golimumab, high pretreatment expression of OSM is strongly associated with failure of anti-TNF therapy. OSM is thus a potential biomarker and therapeutic target for IBD, and has particular relevance for anti-TNF-resistant patients.


Subject(s)
Inflammatory Bowel Diseases/genetics , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M/genetics , Adult , Aged , Animals , Antibodies, Monoclonal/therapeutic use , Case-Control Studies , Chemokines , Colitis/genetics , Colitis/immunology , Disease Models, Animal , Female , Flow Cytometry , Gastrointestinal Agents/therapeutic use , Gene Expression Profiling , Humans , Immunoblotting , Immunohistochemistry , Inflammation , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Infliximab/therapeutic use , Intercellular Adhesion Molecule-1/immunology , Interleukin-6/immunology , Male , Mice , Mice, Knockout , Middle Aged , Oncostatin M/immunology , Oncostatin M/metabolism , Oncostatin M Receptor beta Subunit/immunology , Oncostatin M Receptor beta Subunit/metabolism , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Young Adult
14.
Nat Immunol ; 18(5): 541-551, 2017 05.
Article in English | MEDLINE | ID: mdl-28288099

ABSTRACT

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Subject(s)
Clostridiales/physiology , Colitis, Ulcerative/immunology , Colon/physiology , Firmicutes/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Microbiota , RNA, Ribosomal, 16S/analysis , Animals , Biodiversity , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Colon/microbiology , Dextran Sulfate , Feces/microbiology , Gene-Environment Interaction , Humans , Immunity, Innate/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/genetics , Microbiota/immunology , Symbiosis , Twins, Monozygotic
15.
World J Gastrointest Pharmacol Ther ; 6(4): 213-22, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26558155

ABSTRACT

AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is the first-ever study reporting the therapeutic utility of GC-C agonists as a new class of orally delivered and mucosally active drug candidates for the treatment of inflammatory bowel diseases.

16.
Microbiol Immunol ; 59(8): 452-65, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26146866

ABSTRACT

Induction of mammalian heme oxygenase (HO)-1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO-like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho-like molecules suppress inflammatory immune responses through release of CO. According to real-time PCR, exposure of mice to CO results in changes in enteric bacterial composition and increases E. coli 16S and chuS DNA. Moreover, the severity of experimental colitis correlates positively with E. coli chuS expression in IL-10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co-culture of chuS-overexpressing E. coli with bone marrow-derived macrophages resulted in less IL-12p40 and greater IL-10 secretion than in wild-type or chuS-deficient E. coli. Mice infected with chuS-overexpressing E. coli have more hepatic CO and less serum IL-12 p40 than mice infected with chuS-deficient E. coli. Thus, CO alters the composition of the commensal intestinal microbiota and expands populations of E. coli that harbor the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial HO-like molecules and bacteria-derived CO may represent novel targets for therapeutic intervention in inflammatory conditions.


Subject(s)
Escherichia coli/enzymology , Escherichia coli/immunology , Heme Oxygenase (Decyclizing)/immunology , Heme Oxygenase (Decyclizing)/metabolism , Immune Evasion , Immunity, Innate , Animals , Carbon Monoxide/metabolism , Cells, Cultured , Coculture Techniques , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Escherichia coli/metabolism , Gene Deletion , Gene Expression , Heme Oxygenase (Decyclizing)/genetics , Interleukin-10/metabolism , Interleukin-12 Subunit p40/metabolism , Macrophages/immunology , Male , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics
18.
Gut Microbes ; 5(2): 220-4, 2014.
Article in English | MEDLINE | ID: mdl-24637794

ABSTRACT

Heme oxygenase-1 (HO-1) and its enzymatic by-product carbon monoxide (CO) have emerged as important regulators of acute and chronic inflammation. Mechanisms underlying their anti-inflammatory effects are only partially understood. In this addendum, we summarize current understanding of the role of the HO-1/CO pathway in regulation of intestinal inflammation with a focus on innate immune function. In particular, we highlight our recent findings that HO-1 and CO ameliorate intestinal inflammation through promotion of bacterial clearance. Our work and that of many others support further investigation of this global homeostatic pathway in the human inflammatory bowel diseases (IBDs).


Subject(s)
Heme Oxygenase-1/metabolism , Intestines/microbiology , Animals , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/immunology , Crohn Disease/enzymology , Crohn Disease/immunology , Humans , Immunity, Mucosal/immunology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology
19.
J Immunol ; 192(8): 3958-68, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24634494

ABSTRACT

The p110δ subunit of class IA PI3K modulates signaling in innate immune cells. We previously demonstrated that mice harboring a kinase-dead p110δ subunit (p110δ(KD)) develop spontaneous colitis. Macrophages contributed to the Th1/Th17 cytokine bias in p110δ(KD) mice through increased IL-12 and IL-23 expression. In this study, we show that the enteric microbiota is required for colitis development in germfree p110δ(KD) mice. Colonic tissue and macrophages from p110δ(KD) mice produce significantly less IL-10 compared with wild-type mice. p110δ(KD) APCs cocultured with naive CD4+ Ag-specific T cells also produce significantly less IL-10 and induce more IFN-γ- and IL-17A-producing CD4+ T cells compared with wild-type APCs. Illustrating the importance of APC-T cell interactions in colitis pathogenesis in vivo, Rag1(-/-)/p110δ(KD) mice develop mild colonic inflammation and produced more colonic IL-12p40 compared with Rag1(-/-) mice. However, CD4+ CD45RB(high/low) T cell Rag1(-/-)/p110δ(KD) recipient mice develop severe colitis with increased percentages of IFN-γ- and IL-17A-producing lamina propria CD3+D4+ T cells compared with Rag1(-/-) recipient mice. Intestinal tissue samples from patients with Crohn's disease reveal significantly lower expression of PIK3CD compared with intestinal samples from non-inflammatory bowel disease control subjects (p < 0.05). PIK3CD expression inversely correlates with the ratio of IL12B:IL10 expression. In conclusion, the PI3K subunit p110δ controls homeostatic APC-T cell interactions by altering the balance between IL-10 and IL-12/23. Defects in p110δ expression and/or function may underlie the pathogenesis of human inflammatory bowel disease and lead to new therapeutic strategies.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/metabolism , Colitis/immunology , Colitis/metabolism , Immunity, Innate , Th1 Cells/metabolism , Th17 Cells/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Colitis/genetics , Colitis/microbiology , Colitis/pathology , Cytokines/biosynthesis , Disease Models, Animal , Gene Expression Regulation , Immunity, Innate/genetics , Interleukin-10/biosynthesis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Microbiota , TOR Serine-Threonine Kinases/metabolism , Th1 Cells/immunology , Th17 Cells/immunology
20.
J Immunol ; 192(4): 1918-27, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24442434

ABSTRACT

NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Interleukin-10/genetics , Interleukin-12 Subunit p40/metabolism , Interleukin-23 Subunit p19/metabolism , Microbiota/immunology , Adoptive Transfer , Animals , Arabidopsis Proteins/biosynthesis , Basic-Leucine Zipper Transcription Factors/genetics , Cells, Cultured , Colon/immunology , Colon/pathology , Genetic Predisposition to Disease , Interleukin-12 Subunit p40/genetics , Interleukin-23 Subunit p19/genetics , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Th1 Cells/immunology , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...