Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod Sci ; 193: 40-57, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29673917

ABSTRACT

Biological membranes are composed of a lipid bilayer and proteins that form lipid microdomains. This study examined the effects of fish byproducts on lipid-protein interactions within lipid microdomains of bovine luteal cells. In Exp. 1 and 2, luteal cells were prepared from corpora lutea (CL; n = 4 to 8) collected at an abattoir. Exp. 1 was conducted to optimize ultrasonication in a detergent-free protocol for isolation of lipid microdomains. A power setting of 10 to 20% was effective in isolating lipid microdomains from bulk lipid. In Exp. 2, cells were cultured in control medium or fish oil to determine influence of fish oil on distribution of lipid microdomain markers and prostaglandin F2α (FP) receptors. Cells treated with fish oil had a smaller percentage of microdomain markers and FP receptor in microdomains (P < 0.05). In Exp. 3 and 4, cells were prepared from mid-cycle CL obtained from cows supplemented with corn gluten meal (n = 4) or fish meal (n = 4). Exp. 3 examined effects of dietary supplementation on distribution of lipid microdomain markers and FP receptor and Exp. 4 on fatty acid composition within lipid microdomains. A smaller percentage of lipid microdomain markers and FP receptor was detected in microdomains of cells collected from fish meal supplemented animals (P < 0.05). In Exp. 4, a greater percentage of omega-3 polyunsaturated fatty acids was detected in bulk lipid from fish meal supplemented cows (P < 0.05). Results show that fish byproducts influence lipid-protein interactions in lipid microdomains in bovine luteal cells.


Subject(s)
Animal Feed , Dietary Fats, Unsaturated/pharmacology , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Luteal Cells/drug effects , Membrane Microdomains/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Cattle , Cells, Cultured , Dietary Supplements , Fatty Acids/metabolism , Female , Fish Oils/chemistry , Luteal Cells/metabolism , Membrane Microdomains/metabolism , Primary Cell Culture/veterinary
2.
Domest Anim Endocrinol ; 63: 38-47, 2018 04.
Article in English | MEDLINE | ID: mdl-29306078

ABSTRACT

Many receptors span the plasma membrane allowing for signal transduction, converting extracellular signals into intracellular signals. Following ligand-induced activation, membrane-bound receptors are taken into endocytic vesicles, where they are targeted for degradation or recycled back to the plasma membrane. The objectives of the present study were to determine the influence of fish oil on (1) PGF2α-induced receptor internalization and trafficking of the PGF2α (FP) receptor, (2) cytoskeletal structural integrity, and (3) PGF2α-induced mitogen-activated protein kinase (MAPK) signaling in bovine luteal cells. Bovine ovaries were obtained from a local abattoir and corpora lutea (CL; n = 4-6) were digested using collagenase. For all experiments, cells were incubated in either BSA or fish oil-supplemented media for 72 h to allow incorporation of omega-3 fatty acids into biological membranes. Confocal microscopy was used to determine the influence of fish oil on PGF2α-induced receptor internalization and trafficking of the FP receptor and cytoskeletal structural integrity. In addition, Western blotting was used to determine the effects of fish oil on PGF2α-induced MAPK signaling in bovine luteal cells. Results from the present study demonstrate that fish oil disrupts the colocalization of Gαq with both caveola microdomains and FP receptor as well as PGF2α-induced MAPK signaling. This disruption of the FP receptor with the G-protein alpha subunit may be one mechanism by which a MAPK signaling is diminished following the addition of PGF2α. Furthermore, fish oil disrupts FP receptor internalization and endosomal protein trafficking without detectable changes in the cytoskeleton.


Subject(s)
Cattle , Corpus Luteum/cytology , Fish Oils/pharmacology , Receptors, Prostaglandin/metabolism , Animals , Cells, Cultured , Dinoprost/metabolism , Female , Gene Expression Regulation/drug effects , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Receptors, Prostaglandin/genetics , Serum Albumin, Bovine , Signal Transduction
3.
Domest Anim Endocrinol ; 60: 9-18, 2017 07.
Article in English | MEDLINE | ID: mdl-28273497

ABSTRACT

This study examined the effects of fish meal supplementation on spatial distribution of lipid microdomains and lateral mobility of prostaglandin F2α (FP) receptors on cell plasma membranes of the bovine corpus luteum (CL). Beef cows were stratified by BW and randomly assigned to receive a corn gluten meal supplement (n = 4) or fish meal supplement (n = 4) for 60 d to allow incorporation of fish meal-derived omega-3 fatty acids into luteal tissue. Ovaries bearing the CL were surgically removed between days 10 to 12 after estrus corresponding to approximately day 60 of supplementation. A 200-mg sample of luteal tissue was analyzed for fatty acid content using gas-liquid chromatography (GLC). The remaining tissue was enzymatically digested with collagenase to dissociate individual cells from the tissue. Cells were cultured to determine the effects of dietary supplementation on lipid microdomains and lateral mobility of FP receptors. Luteal tissue collected from fish meal-supplemented cows had increased omega-3 fatty acids content (P < 0.05). Lipid microdomain total fluorescent intensity was decreased in dissociated luteal cells from fish meal-supplemented cows (P < 0.05). Micro and macro diffusion coefficients of FP receptors were greater for cells obtained from fish meal-supplemented cows (P < 0.05). In addition, compartment diameter of domains was larger, whereas resident time was shorter for receptors from cells obtained from fish meal-supplemented cows (P < 0.05). Data indicate that dietary supplementation with fish meal increases omega-3 fatty acid content in luteal tissue causing disruption of lipid microdomains. This disruption leads to increased lateral mobility of the FP receptor, increased compartment sizes, and decreased resident time, which may influence prostaglandin signaling in the bovine CL.


Subject(s)
Animal Feed/analysis , Cattle , Dietary Supplements , Fish Products , Lipid Metabolism/drug effects , Receptors, Prostaglandin/metabolism , Animal Nutritional Physiological Phenomena , Animals , Corpus Luteum/cytology , Corpus Luteum/drug effects , Diet/veterinary , Female , Receptors, Prostaglandin/genetics
4.
Domest Anim Endocrinol ; 58: 39-52, 2017 01.
Article in English | MEDLINE | ID: mdl-27643975

ABSTRACT

Lipid microdomains are ordered regions on the plasma membrane of cells, rich in cholesterol and sphingolipids, ranging in size from 10 to 200 nm in diameter. These lipid-ordered domains may serve as platforms to facilitate colocalization of intracellular signaling proteins during agonist-induced signal transduction. It is hypothesized that fish oil will disrupt the lipid microdomains, increasing spatial distribution of these lipid-ordered domains and lateral mobility of the prostaglandin (PG) F2α (FP) receptors in bovine luteal cells. The objectives of this study were to examine the effects of fish oil on (1) the spatial distribution of lipid microdomains, (2) lateral mobility of FP receptors, and (3) lateral mobility of FP receptors in the presence of PGF2α on the plasma membrane of bovine luteal cells in vitro. Bovine ovaries were obtained from a local abattoir and corpora lutea were digested using collagenase. In experiment 1, lipid microdomains were labeled using cholera toxin subunit B Alexa Fluor 555. Domains were detected as distinct patches on the plasma membrane of mixed luteal cells. Fish oil treatment decreased fluorescent intensity in a dose-dependent manner (P < 0.01). In experiment 2, single particle tracking was used to examine the effects of fish oil treatment on lateral mobility of FP receptors. Fish oil treatment increased microdiffusion and macrodiffusion coefficients of FP receptors as compared to control cells (P < 0.05). In addition, compartment diameters of domains were larger, and residence times were reduced for receptors in fish oil-treated cells (P < 0.05). In experiment 3, single particle tracking was used to determine the effects of PGF2α on lateral mobility of FP receptors and influence of fish oil treatment. Lateral mobility of receptors was decreased within 5 min following the addition of ligand for control cells (P < 0.05). However, lateral mobility of receptors was unaffected by addition of ligand for fish oil-treated cells (P > 0.10). The data presented provide strong evidence that fish oil causes a disruption in lipid microdomains and affects lateral mobility of FP receptors in the absence and presence of PGF2α.


Subject(s)
Cattle , Cell Membrane/drug effects , Fish Oils/pharmacology , Lipids/analysis , Luteal Cells/ultrastructure , Receptors, Prostaglandin/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Cells, Cultured , Diffusion/drug effects , Dinoprost/pharmacology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...