Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 5(10): eaax6363, 2019 10.
Article in English | MEDLINE | ID: mdl-31616792

ABSTRACT

The "red reflex test" is used to screen children for leukocoria ("white eye") in a standard pediatric examination, but is ineffective at detecting many eye disorders. Leukocoria also presents in casual photographs. The clinical utility of screening photographs for leukocoria is unreported. Here, a free smartphone application (CRADLE: ComputeR-Assisted Detector of LEukocoria) was engineered to detect photographic leukocoria and is available for download under the name "White Eye Detector." This study determined the sensitivity, specificity, and accuracy of CRADLE by retrospectively analyzing 52,982 longitudinal photographs of children, collected by parents before enrollment in this study. The cohort included 20 children with retinoblastoma, Coats' disease, cataract, amblyopia, or hyperopia and 20 control children. For 80% of children with eye disorders, the application detected leukocoria in photographs taken before diagnosis by 1.3 years (95% confidence interval, 0.4 to 2.3 years). The CRADLE application allows parents to augment clinical leukocoria screening with photography.


Subject(s)
Eye Diseases/diagnosis , Photography , Child , Child, Preschool , Eye Diseases/epidemiology , Eye Diseases/pathology , Eye Diseases/physiopathology , Humans , Image Processing, Computer-Assisted , Incidence , Infant , Probability , Smartphone , Treatment Outcome
2.
Methods Mol Biol ; 1873: 93-108, 2019.
Article in English | MEDLINE | ID: mdl-30341605

ABSTRACT

Investigating in vitro kinetics of superoxide dismutase-1 (SOD1) aggregation with high-throughput microplate-based assays provides valuable information regarding SOD1 pathogenesis in amyotrophic lateral sclerosis (ALS) and opens venues for the development of effective therapies. In this chapter, we first explain the step-by-step purification and demetallation of wild-type (WT) and ALS-variant SOD1 proteins from Saccharomyces cerevisiae (baker's yeast). We then describe the methodology for a microplate-based fluorescence assay that is used to study real-time kinetics of metal-free (apo)-SOD1 aggregation. This technique is highly sensitive, semiautomated, requires minimum modifications to protein, and produces a plethora of data in a short period of time. We also describe a new approach for extracting clinically relevant information from SOD1 aggregation data using Kaplan-Meier estimators.


Subject(s)
Biological Assay/methods , High-Throughput Screening Assays , Spectrometry, Fluorescence , Superoxide Dismutase-1/metabolism , Data Interpretation, Statistical , Humans , Kinetics , Protein Aggregates , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrometry, Fluorescence/methods , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/isolation & purification
3.
ACS Chem Neurosci ; 9(7): 1743-1756, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29649360

ABSTRACT

Interactions between superoxide dismutase-1 (SOD1) and lipid membranes might be directly involved in the toxicity and intercellular propagation of aggregated SOD1 in amyotrophic lateral sclerosis (ALS), but the chemical details of lipid-SOD1 interactions and their effects on SOD1 aggregation remain unclear. This paper determined the rate and mechanism of nucleation of fibrillar apo-SOD1 catalyzed by liposomal surfaces with identical hydrophobic chains (RCH2(O2C18H33)2), but headgroups of different net charge and hydrophobicity (i.e., R(CH2)N+(CH3)3, RPO4-(CH2)2N+(CH3)3, and RPO4-). Under semiquiescent conditions (within a 96 well microplate, without a gyrating bead), the aggregation of apo-SOD1 into thioflavin-T-positive (ThT(+)) amyloid fibrils did not occur over 120 h in the absence of liposomal surfaces. Anionic liposomes triggered aggregation of apo-SOD1 into ThT(+) amyloid fibrils; cationic liposomes catalyzed fibrillization but at slower rates and across a narrower lipid concentration; zwitterionic liposomes produced nonfibrillar (amorphous) aggregates. The inability of zwitterionic liposomes to catalyze fibrillization and the dependence of fibrillization rate on anionic lipid concentration suggests that membranes catalyze SOD1 fibrillization by a primary nucleation mechanism. Membrane-catalyzed fibrillization was also examined for eight ALS variants of apo-SOD1, including G37R, G93R, D90A, and E100G apo-SOD1 that nucleate slower than or equal to WT SOD1 in lipid-free, nonquiescent amyloid assays. All ALS variants (with one exception) nucleated faster than WT SOD1 in the presence of anionic liposomes, wherein the greatest acceleratory effects were observed among variants with lower net negative surface charge (G37R, G93R, D90A, E100G). The exception was H46R apo-SOD1, which did not form ThT(+) species.


Subject(s)
Protein Aggregation, Pathological/metabolism , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes/metabolism , Phosphatidylcholines/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , Surface Properties
4.
J Biol Chem ; 292(47): 19366-19380, 2017 11 24.
Article in English | MEDLINE | ID: mdl-28974578

ABSTRACT

The acylation of lysine residues in superoxide dismutase-1 (SOD1) has been previously shown to decrease its rate of nucleation and elongation into amyloid-like fibrils linked to amyotrophic lateral sclerosis. The chemical mechanism underlying this effect is unclear, i.e. hydrophobic/steric effects versus electrostatic effects. Moreover, the degree to which the acylation might alter the prion-like seeding of SOD1 in vivo has not been addressed. Here, we acylated a fraction of lysine residues in SOD1 with groups of variable hydrophobicity, charge, and conformational entropy. The effect of each acyl group on the rate of SOD1 fibril nucleation and elongation were quantified in vitro with thioflavin-T (ThT) fluorescence, and we performed 594 iterate aggregation assays to obtain statistically significant rates. The effect of the lysine acylation on the prion-like seeding of SOD1 was assayed in spinal cord extracts of transgenic mice expressing a G85R SOD1-yellow fluorescent protein construct. Acyl groups with >2 carboxylic acids diminished self-assembly into ThT-positive fibrils and instead promoted the self-assembly of ThT-negative fibrils and amorphous complexes. The addition of ThT-negative, acylated SOD1 fibrils to organotypic spinal cord failed to produce the SOD1 inclusion pathology that typically results from the addition of ThT-positive SOD1 fibrils. These results suggest that chemically increasing the net negative surface charge of SOD1 via acylation can block the prion-like propagation of oligomeric SOD1 in spinal cord.


Subject(s)
Amyloid/metabolism , Lysine/metabolism , Prions/metabolism , Spinal Cord/metabolism , Superoxide Dismutase-1/metabolism , Acylation , Animals , Humans , Inclusion Bodies , Mice , Mice, Transgenic , Organ Culture Techniques , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...