Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 11(2): e0111621, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35175122

ABSTRACT

Stenotrophomonas maltophilia strain 1800 was isolated from the effluent of an industrial oil refinery in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and assembled using Unicycler. It is composed of one chromosome of 4.83 Mb.

2.
Environ Sci Pollut Res Int ; 29(7): 9462-9489, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34859349

ABSTRACT

Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Biodegradation, Environmental , Ecosystem , Humans , Soil , Soil Pollutants/analysis , Water
4.
Environ Microbiol Rep ; 13(5): 606-615, 2021 10.
Article in English | MEDLINE | ID: mdl-33973709

ABSTRACT

Acid mine drainages (AMDs), metal-rich acidic effluents generated by mining activities, are colonized by prokaryotic and eukaryotic microorganisms widely distributed among different phyla. We compared metatranscriptomic data from two sampling stations in the Carnoulès AMD and from a third station in the nearby Amous River, focussing on processes involved in primary production and litter decomposition. A synergistic relationship between the green and brown food webs was favoured in the AMD sediments by the low carbon content and the availability of mineral nutrients: primary production of organic matter would benefit C-limited decomposers whose activity of organic matter mineralization would in turn profit primary producers. This balance could be locally disturbed by heterogeneous factors such as an input of plant debris from the riparian vegetation, strongly boosting the growth of Tremellales which would then outcompete primary producers. In the unpolluted Amous River on the contrary, the competition for limited mineral nutrients was dominated by the green food web, fish and bacterivorous protists having a positive effect on phytoplankton. These results suggest that in addition to direct effects of low pH and metal contamination, trophic conditions like carbon or mineral nutrient limitations also have a strong impact on assembly and activities of AMDs' microbial communities.


Subject(s)
Food Chain , Phytoplankton , Animals , Eukaryota , Prokaryotic Cells , Rivers
5.
Antonie Van Leeuwenhoek ; 114(4): 411-424, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33587226

ABSTRACT

A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24 h. This bacterium was subsequently identified by 16S rRNA gene sequence analysis and affiliated to the Serratia genus by the RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the emulsification index (E24) reaching 43.47% and 65.22%, against vegetable and crude oil, respectively. Finally, the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. Tan611 a good candidate for hydrocarbon bioremediation.


Subject(s)
Petroleum , Serratia , Algeria , Biodegradation, Environmental , Biofilms , Hydrocarbons , RNA, Ribosomal, 16S/genetics , Serratia/genetics
6.
Microbiol Resour Announc ; 9(47)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33214306

ABSTRACT

Microbacterium sp. strain Nx66 was isolated from waters contaminated by petrochemical effluents collected in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and was assembled using Unicycler. It is composed of one chromosome of 3.42 Mb and one plasmid of 34.22 kb.

7.
Res Microbiol ; 171(1): 37-43, 2020.
Article in English | MEDLINE | ID: mdl-31606487

ABSTRACT

Amongst iron-oxidizing bacteria playing a key role in the natural attenuation of arsenic in acid mine drainages (AMDs), members of the Ferrovum genus were identified in mine effluent or water treatment plants, and were shown to dominate biogenic precipitates in field pilot experiments. In order to address the question of the in situ activity of the uncultivated Ferrovum sp. CARN8 strain in the Carnoulès AMD, we assembled its genome using metagenomic and metatranscriptomic sequences and we determined standardized expression values for protein-encoding genes. Our results showed that this microorganism was indeed metabolically active and allowed us to sketch out its metabolic activity in its natural environment. Expression of genes related to the respiratory chain and carbon fixation suggests aerobic energy production coupled to ferrous iron oxidation and chemolithoautotrophic growth. Notwithstanding the presence of nitrogenase genes in its genome, expression data also indicated that Ferrovum sp. CARN8 relied on ammonium import rather than nitrogen fixation. The expression of flagellum and chemotaxis genes hints that at least a proportion of this strain population was motile. Finally, apart from some genes related to metal resistance showing surprisingly low expression values, genes involved in stress response were well expressed as expected in AMDs.


Subject(s)
Betaproteobacteria/genetics , Sewage/microbiology , Ammonium Compounds/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Betaproteobacteria/classification , Betaproteobacteria/isolation & purification , Betaproteobacteria/metabolism , Gene Expression Regulation, Bacterial , Metagenomics , Transcriptome
8.
Front Microbiol ; 9: 820, 2018.
Article in English | MEDLINE | ID: mdl-29755441

ABSTRACT

Microorganisms play a major role in biogeochemical cycles. As such they are attractive candidates for developing new or improving existing biotechnological applications, in order to deal with the accumulation and pollution of organic and inorganic compounds. Their ability to participate in bioremediation processes mainly depends on their capacity to metabolize toxic elements and catalyze reactions resulting in, for example, precipitation, biotransformation, dissolution, or sequestration. The contribution of genomics may be of prime importance to a thorough understanding of these metabolisms and the interactions of microorganisms with pollutants at the level of both single species and microbial communities. Such approaches should pave the way for the utilization of microorganisms to design new, efficient and environmentally sound remediation strategies, as exemplified by the case of arsenic contamination, which has been declared as a major risk for human health in various parts of the world.

9.
PLoS Comput Biol ; 13(1): e1005276, 2017 01.
Article in English | MEDLINE | ID: mdl-28129330

ABSTRACT

Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system.


Subject(s)
Genomics/methods , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Software , Transcriptome/genetics , Algorithms , Databases, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Genome/genetics
10.
Environ Microbiol ; 18(4): 1289-300, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769162

ABSTRACT

Arsenic is a toxic metalloid known to generate an important oxidative stress in cells. In the present study, we focused our attention on an alga related to the genus Coccomyxa, exhibiting an extraordinary capacity to resist high concentrations of arsenite and arsenate. The integrated analysis of high-throughput transcriptomic data and non-targeted metabolomic approaches highlighted multiple levels of protection against arsenite. Indeed, Coccomyxa sp. Carn induced a set of transporters potentially preventing the accumulation of this metalloid in the cells and presented a distinct arsenic metabolism in comparison to another species more sensitive to that compound, i.e. Euglena gracilis, especially in regard to arsenic methylation. Interestingly, Coccomyxa sp. Carn was characterized by a remarkable accumulation of the strong antioxidant glutathione (GSH). Such observation could explain the apparent low oxidative stress in the intracellular compartment, as suggested by the transcriptomic analysis. In particular, the high amount of GSH in the cell could play an important role for the tolerance to arsenate, as suggested by its partial oxidation into oxidized glutathione in presence of this metalloid. Our results therefore reveal that this alga has acquired multiple and original defence mechanisms allowing the colonization of extreme ecosystems such as acid mine drainages.


Subject(s)
Arsenates/metabolism , Arsenites/metabolism , Chlorophyta/metabolism , Glutathione/metabolism , Metabolomics , Membrane Transport Proteins/metabolism , Methylation , Oxidation-Reduction
11.
Front Microbiol ; 6: 993, 2015.
Article in English | MEDLINE | ID: mdl-26441922

ABSTRACT

The acid mine drainage (AMD) in Carnoulès (France) is characterized by the presence of toxic metals such as arsenic. Several bacterial strains belonging to the Thiomonas genus, which were isolated from this AMD, are able to withstand these conditions. Their genomes carry several genomic islands (GEIs), which are known to be potentially advantageous in some particular ecological niches. This study focused on the role of the "urea island" present in the Thiomonas CB2 strain, which carry the genes involved in urea degradation processes. First, genomic comparisons showed that the genome of Thiomonas sp. CB2, which is able to degrade urea, contains a urea genomic island which is incomplete in the genome of other strains showing no urease activity. The urease activity of Thiomonas sp. CB2 enabled this bacterium to maintain a neutral pH in cell cultures in vitro and prevented the occurrence of cell death during the growth of the bacterium in a chemically defined medium. In AMD water supplemented with urea, the degradation of urea promotes iron, aluminum and arsenic precipitation. Our data show that ureC was expressed in situ, which suggests that the ability to degrade urea may be expressed in some Thiomonas strains in AMD, and that this urease activity may contribute to their survival in contaminated environments.

12.
PLoS One ; 10(9): e0139011, 2015.
Article in English | MEDLINE | ID: mdl-26422469

ABSTRACT

Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments.


Subject(s)
Arsenic , Burkholderiaceae/genetics , Genome, Bacterial , Water Microbiology , Burkholderiaceae/isolation & purification
13.
Res Microbiol ; 166(3): 205-14, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25753102

ABSTRACT

Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].


Subject(s)
Arsenic/metabolism , Bacterial Proteins/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pseudomonas/genetics , Arsenates/metabolism , Arsenic/pharmacology , Arsenite Transporting ATPases/genetics , Arsenite Transporting ATPases/metabolism , Arsenites/metabolism , Arsenites/pharmacology , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial , Drug Resistance, Bacterial , France , Gene Expression Regulation, Bacterial , Mining , Operon , Oxidation-Reduction , Phylogeny , Plasmids , Pseudomonas/enzymology , Pseudomonas/growth & development , Pseudomonas/isolation & purification
14.
Environ Microbiol ; 17(6): 1941-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24698441

ABSTRACT

Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses.


Subject(s)
Arsenic/metabolism , Biological Transport/genetics , Euglena/metabolism , Membrane Transport Proteins/genetics , Biological Transport/physiology , Drug Resistance/genetics , Drug Resistance/physiology , Euglena/drug effects , Euglena/genetics , Membrane Transport Proteins/metabolism , Photosynthesis
15.
Genome Announc ; 1(5)2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24115546

ABSTRACT

We report the genome sequence of Halomonas sp. strain A3H3, a bacterium with a high tolerance to arsenite, isolated from multicontaminated sediments of the l'Estaque harbor in Marseille, France. The genome is composed of a 5,489,893-bp chromosome and a 157,085-bp plasmid.

16.
Mol Ecol ; 22(19): 4870-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23998659

ABSTRACT

Microorganisms dwelling in sediments have a crucial role in biogeochemical cycles and are expected to have a strong influence on the cycle of arsenic, a metalloid responsible for severe water pollution and presenting major health risks for human populations. We present here a metagenomic study of the sediment from two harbours on the Mediterranean French coast, l'Estaque and St Mandrier. The first site is highly polluted with arsenic and heavy metals, while the arsenic concentration in the second site is below toxicity levels. The goal of this study was to elucidate the potential impact of the microbial community on the chemical parameters observed in complementary geochemical studies performed on the same sites. The metagenomic sequences, along with those from four publicly available metagenomes used as control data sets, were analysed with the RAMMCAP workflow. The resulting functional profiles were compared to determine the over-represented Gene Ontology categories in the metagenomes of interest. Categories related to arsenic resistance and dissimilatory sulphate reduction were over-represented in l'Estaque. More importantly, despite very similar profiles, the identification of specific sequence markers for sulphate-reducing bacteria and sulphur-oxidizing bacteria showed that sulphate reduction was significantly more associated with l'Estaque than with St Mandrier. We propose that biotic sulphate reduction, arsenate reduction and fermentation may together explain the higher mobility of arsenic observed in l'Estaque in previous physico-chemical studies of this site. This study also demonstrates that it is possible to draw sound conclusions from comparing complex and similar unassembled metagenomes at the functional level, even with very low sequence coverage.


Subject(s)
Arsenic/metabolism , Geologic Sediments/microbiology , Metagenome , Water Pollutants/metabolism , France , Gene Ontology , Genes, Bacterial , Mediterranean Sea , Proteobacteria/classification , Proteobacteria/genetics , Sequence Analysis, DNA , Sulfates/metabolism , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics
17.
Genome Biol Evol ; 5(5): 934-53, 2013.
Article in English | MEDLINE | ID: mdl-23589360

ABSTRACT

Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.


Subject(s)
Arsenites/metabolism , Bacteria , Genome, Bacterial , Rhizobium , Arsenites/chemistry , Autotrophic Processes , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biofilms , Genetic Fitness , Gold/chemistry , Oxidation-Reduction , Phylogeny , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/metabolism , Symbiosis/genetics
18.
Sci Rep ; 2: 354, 2012.
Article in English | MEDLINE | ID: mdl-22482035

ABSTRACT

Acid Mine Drainages (AMDs) are extreme environments characterized by acidic and oligotrophic conditions and by metal contaminations. A function-based screening of an AMD-derived metagenomic library led to the discovery and partial characterization of two non-homologous endo-acting amylases sharing no sequence similarity with any known amylase nor glycosidase. None carried known amylolytic domains, nor could be assigned to any GH-family. One amylase displayed no similarity with any known protein, whereas the second one was similar to TraC proteins involved in the bacterial type IV secretion system. According to the scarce similarities with known proteins, 3D-structure modelling using I-TASSER was unsuccessful. This study underlined the utility of a function-driven metagenomic approach to obtain a clearer image of the bacterial community enzymatic landscape. More generally, this work points out that screening for microorganisms or biomolecules in a priori incongruous environments could provide unconventional and new exciting ways for bioprospecting.

19.
Acta Neuropathol ; 124(2): 273-83, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22526018

ABSTRACT

Inherited neuromuscular disorders (NMD) are chronic genetic diseases posing a significant burden on patients and the health care system. Despite tremendous research and clinical efforts, the molecular causes remain unknown for nearly half of the patients, due to genetic heterogeneity and conventional molecular diagnosis based on a gene-by-gene approach. We aimed to test next generation sequencing (NGS) as an efficient and cost-effective strategy to accelerate patient diagnosis. We designed a capture library to target the coding and splice site sequences of all known NMD genes and used NGS and DNA multiplexing to retrieve the pathogenic mutations in patients with heterogeneous NMD with or without known mutations. We retrieved all known mutations, including point mutations and small indels, intronic and exonic mutations, and a large deletion in a patient with Duchenne muscular dystrophy, validating the sensitivity and reproducibility of this strategy on a heterogeneous subset of NMD with different genetic inheritance. Most pathogenic mutations were ranked on top in our blind bioinformatic pipeline. Following the same strategy, we characterized probable TTN, RYR1 and COL6A3 mutations in several patients without previous molecular diagnosis. The cost was less than conventional testing for a single large gene. With appropriate adaptations, this strategy could be implemented into a routine genetic diagnosis set-up as a first screening approach to detect most kind of mutations, potentially before the need of more invasive and specific clinical investigations. An earlier genetic diagnosis should provide improved disease management and higher quality genetic counseling, and ease access to therapy or inclusion into therapeutic trials.


Subject(s)
Molecular Diagnostic Techniques/methods , Neuromuscular Diseases/diagnosis , Sequence Analysis, DNA , Databases, Genetic , Humans , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , Reproducibility of Results
20.
Appl Microbiol Biotechnol ; 93(4): 1735-44, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21792588

ABSTRACT

Euglena mutabilis is a protist ubiquitously found in extreme environments such as acid mine drainages which are often rich in arsenic. The response of E. mutabilis to this metalloid was compared to that of Euglena gracilis, a protist not found in such environments. Membrane fatty acid composition, cell surface properties, arsenic accumulation kinetics, and intracellular arsenic speciation were determined. The results revealed a modification in fatty acid composition leading to an increased membrane fluidity in both Euglena species under sublethal arsenic concentrations exposure. This increased membrane fluidity correlated to an induced gliding motility observed in E. mutabilis in the presence of this metalloid but did not affect the flagellar dependent motility of E. gracilis. Moreover, when compared to E. gracilis, E. mutabilis showed highly hydrophobic cell surface properties and a higher tolerance to water-soluble arsenical compounds but not to hydrophobic ones. Finally, E. mutabilis showed a lower accumulation of total arsenic in the intracellular compartment and an absence of arsenic methylated species in contrast to E. gracilis. Taken together, our results revealed the existence of a specific arsenical response of E. mutabilis that may play a role in its hypertolerance to this toxic metalloid.


Subject(s)
Adaptation, Physiological , Arsenic/toxicity , Euglena/drug effects , Soil Pollutants/toxicity , Cell Membrane/chemistry , Cell Membrane/drug effects , Drug Tolerance , Euglena/chemistry , Euglena/physiology , Fatty Acids/analysis , Hydrophobic and Hydrophilic Interactions , Locomotion , Membrane Fluidity/drug effects , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...