Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Sep Sci ; 34(16-17): 2164-72, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21648083

ABSTRACT

Cryostructuration platform renders it possible to form macroporous materials (known as cryogels) with a broad range of porosity, from structures with combination of meso- and macropores to structures with 100-µm sized macropores. When these materials are formed in the shape of monoliths (monolithic cryogels), they present a unique monolithic stationary medium for specific applications. This review summarizes the recent research on the preparation and characterization of cryostructurated monolithic cryogels for (bio)separation and points to some future perspectives.


Subject(s)
Chromatography/instrumentation , Cryogels/chemistry , Proteins/isolation & purification , Animals , Cryogels/chemical synthesis , Humans , Porosity , Proteins/chemistry
2.
Biomaterials ; 32(13): 3423-34, 2011 May.
Article in English | MEDLINE | ID: mdl-21324403

ABSTRACT

Currently, there are no effective therapies to restore lost brain neurons, although rapid progress in stem cell biology and biomaterials development provides new tools for regeneration of central nervous system. Here we describe neurogenic properties of bioactive scaffolds generated by cryogelation of dextran or gelatin linked to laminin - the main component of brain extracellular matrix. We showed that such scaffolds promoted differentiation of human cord blood-derived stem cells into artificial neural tissue in vitro. Our experiments revealed that optimal range of scaffolds' pore size for neural tissue engineering was 80-100 microns. We found that scaffold seeded with undifferentiated, but not neutrally committed stem cells, gave optimal cell adhesion and proliferation in "niche"-like structures. Subsequent differentiation resulted in generation of mature 3D networks of neurons (MAP2+) and glia (S100beta+) cells. We showed that cryogel scaffolds could be transplanted into the brain tissue or organotypic hippocampal slices in a rat models. The scaffolds did not induced inflammation mediated by microglial cells (ED1-, Ox43-, Iba1-) and prevented formation of glial scar (GFAP-). Contrary, laminin-rich scaffolds attracted infiltration of host's neuroblasts (NF200+, Nestin+) indicating high neuroregeneration properties.


Subject(s)
Hydrogels/chemistry , Laminin/chemistry , Nerve Regeneration/drug effects , Stem Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Differentiation/drug effects , Cells, Cultured , Cryogels , Humans , Hydrogels/pharmacology , Laminin/pharmacology , Male , Rats , Rats, Wistar , Stem Cells/drug effects
3.
Biotechnol Prog ; 26(5): 1295-302, 2010.
Article in English | MEDLINE | ID: mdl-20945486

ABSTRACT

Applications of IDA in, for example, immobilized metal ion affinity chromatography for purification of His-tagged proteins are well recognized. The use of IDA as an efficient chelating adsorbent for environmental separations, that is, for the capture of heavy metals, is not studied. Adsorbents based on supermacroporous gels (cryogels) bearing metal chelating functionalities (IDA residues and ligand derived from derivatization of epoxy-cryogel with tris(2-aminoethyl)amine followed by the treatment with bromoacetic acid (defined as TBA ligand)) have been prepared and evaluated on capture of heavy metal ions. The cryogels were prepared in plastic carriers, resulting in desired mechanical stability and named as macroporous gel particles (MGPs). Sorption and desorption experiments for different metals (Cu²+, Zn²+, Cd²+, and Ni²+ with IDA adsorbent and Cu²+ and Zn²+ with TBA adsorbent) were carried out in batch and monolithic modes, respectively. Obtained capacities with Cu²+ were 74 µmol/mL (TBA) and 19 µmol/mL gel (IDA). The metal removal was higher for pH values between pH 3 and 5. Both adsorbents showed improved sorption at lower temperatures (10°C) than at higher (40°C) and the adsorption significantly dropped for the TBA adsorbent and Zn²+ at 40°C. Desorption of Cu²+ by using 1 M HCl and 0.1 M EDTA was successful for the IDA adsorbent whereas the desorption with the TBA adsorbent needs further attention. The result of this work has demonstrated that MGPs are potential treatment alternatives within the field of environmental separations and the removal of heavy metals from water effluents.


Subject(s)
Chelating Agents/chemistry , Hydrogels/chemistry , Metals, Heavy/isolation & purification , Water Purification/methods , Adsorption , Cryogels , Hydrogen-Ion Concentration , Temperature
4.
Appl Biochem Biotechnol ; 159(1): 251-60, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19551352

ABSTRACT

New immobilized biocatalysts based on polypeptides containing N- or C-terminal polyhistidine sequences and possessing organophosphorus hydrolase activity were investigated for detoxification of organophosphorous neurotoxic compounds in the flow systems. The biocatalysts were revealed to have a high catalytic activity within wide pH and temperature ranges 7.5-12.5 degrees C and 15-65 degrees C, respectively. The immobilized biocatalysts can be dried and reswollen before use with 92-93% catalytic activity remaining after drying and rehydration procedures. The half-lives of the biocatalysts under wet and dry storage conditions were 420 and 540 days, respectively.


Subject(s)
Aryldialkylphosphatase/chemistry , Decontamination/methods , Enzymes, Immobilized/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/isolation & purification , Rheology/methods , Adsorption , Catalysis , Desiccation
5.
J Sep Sci ; 32(9): 1471-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19399860

ABSTRACT

Highly efficient removal of endocrine-disrupting compounds (EDCs) such as 17beta-estradiol (E2), 4-nonylphenol (NP) and atrazine from water was achieved using a novel macroporous adsorption medium. The medium consisted of a macroporous poly(vinyl alcohol) (PVA) cryogel with molecularly imprinted polymer (MIP) particles embedded in it. The MIP was prepared using E2, NP and atrazine as templates. The macroporous composite molecularly imprinted cryogels were formed inside the open-ended protective shells, known as Kaldnes carriers. These adsorbents (defined as Macroporous Gel Particles, MGPs) were evaluated on the removal of E2, NP and atrazine from water using different column configurations, namely column filled with the MGPs (packed-bed column) and in moving-bed reactors (defined here as moving-bed MGPs reactor). Complete binding (> 99%) of E2 from a spiked aqueous solution (1 mg/L) was achieved using E2-MIP/MGPs in a moving-bed MGPs reactor at the retention time in the reactor of 4 min, while only 77% was bound to the nonimprinted medium (NIP/MGPs). Similar results were also obtained for the adsorption medium imprinted with atrazine. All contaminants studied (E2, atrazine and NP) were effectively removed from water at low (environmentally relevant) concentrations by the respective adsorption medium.


Subject(s)
Endocrine Disruptors/isolation & purification , Molecular Imprinting , Polymers/chemistry , Water Purification/instrumentation , Water Purification/methods , Atrazine/chemistry , Endocrine Disruptors/chemistry , Estradiol/chemistry , Kinetics , Methacrylates/chemistry , Nitriles/chemistry , Phenols/chemistry , Polymers/chemical synthesis , Polyvinyl Alcohol/chemistry , Pyridines/chemistry , Rheology , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
6.
Trends Microbiol ; 16(11): 543-51, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18835715

ABSTRACT

There is a great demand for improved technologies with regard to rapid processing of nano- and microparticles. The handling of viruses in addition to microbial and mammalian cells requires the availability of appropriate adsorbents. Recent developments in macroporous gels produced at subzero temperatures (known as cryogels) have demonstrated an efficiency for processing cell and virus suspensions, cell separation and cell culture applications. Their unique combination of properties such as macroporosity, tissue-like elasticity and biocompatibility, physical and chemical stability and ease of preparation, renders these materials interesting candidates for a broad range of potential applications within microbiological research. This review describes current applications of macroporous cryogels in microbiology with a brief discussion of future perspectives.


Subject(s)
Blood Proteins , Culture Techniques/methods , Fibronectins , Microbiological Techniques/methods , Blood Proteins/chemistry , Cells, Immobilized , Cryogels , Fibronectins/chemistry , Hydrogels
7.
Biotechnol Prog ; 24(5): 1122-31, 2008.
Article in English | MEDLINE | ID: mdl-19194922

ABSTRACT

Cell proliferation and long-term production of monoclonal antibody IgG(2b) by M2139 hybridoma cells immobilized in macroporous gel particles (MGPs) in packed-bed reactor were studied for a period of 60 days. The MGPs were made of supermacroporous gels produced in frozen conditions from crosslinked polyacrylamide and modified with gelatin which were housed in special plastic carriers (7 x 9 mm(2)). Cells were trapped in the interior part of MGPs by attaching to the void space of the gel matrix as three-dimensional (3D) cultivation using gelatin as a substrate layer. Optimizing productivity by hybridoma cell relies on understanding regulation of antibody production. In this study, the behavior of M2139 cells in two-dimensional cultures on multiwell plate surfaces was also investigated. The effect of three different medium such as basal medium Dulbecco's modified Eagle's medium (D-MEM) containing L-glutamine or L-glutamine + 2 mM alpha-ketoglutarate or L-alanyl-glutamine (GlutaMAXtrade mark) was studied prior to its use in 3D cultivation. The kinetics of cell growth in basal medium containing L-glutamine + alpha-ketoglutarate was similar to cells grown on GlutaMAX containing medium, whereas D-MEM containing L-glutamine showed lower productivity. With the maximal viable cell density (6.85 x 10(6) cells mL(-1)) and highest specific mAb production rate (3.9 mug mL(-1) 10(-4) viable cell day(-1)), D-MEM-GlutaMAX was further selected for 3D cultivation. Cells in MGPs were able to grow and secrete antibody for 30 days in packed-bed batch reactor, before a fresh medium reservoir was replaced. After being supplied with fresh medium, cells again showed continuous growth for another 30 days with mAb production efficiency of 50%. These results demonstrate that MGPs can be used efficiently as supporting carrier for long-term monoclonal antibody production.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Bioreactors , Hybridomas/metabolism , Acrylic Resins/chemistry , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line , Cell Proliferation , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Gelatin/chemistry , Gels/chemistry , Hybridomas/cytology , Kinetics , Mice , Particle Size , Porosity , Surface Properties , Time Factors
8.
Biotechnol J ; 3(3): 410-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18022855

ABSTRACT

A new design of robust matrices for cell immobilization is described. Macroporous gels (MGs) with immobilized microbial cells were prepared at subzero temperatures and were formed inside a plastic core (so-called, protective housing). Due to the protective housing the macroporous gel particles with immobilized cells can be used in well-stirred bioreactors. High retained activity of yeast (77-92%) and Escherichia coli (50-91%) cells immobilized in MGs after drying and storage in the dried state was due to the high structural stability and heterogeneous porous structure of the MGs.


Subject(s)
Biocompatible Materials/chemistry , Cell Adhesion/physiology , Cell Culture Techniques/methods , Cells, Immobilized/physiology , Extracellular Matrix/chemistry , Gels/chemistry , Biomimetic Materials/chemistry , Materials Testing , Particle Size , Porosity
9.
J Biotechnol ; 131(3): 293-9, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17709150

ABSTRACT

Selected phage clones expressing a peptide with high binding affinity for recombinant human lactoferrin or von Willebrand factor (vWF) were covalently coupled to macroporous poly(dimethylacrylamide) monolithic column. Large pore size (10-100 microm) of macroporous poly(dimethylacrylamide) makes it possible to couple long (1 microm) phage particles as ligands without any risk of blocking the monolithic column. The macroporous monolithic columns were successfully used for the direct affinity capture of target proteins from particulate containing feeds like milk containing casein micelles and fat globules (1-10 microm in size) or even whole blood containing blood cells (up to 20 microm in size). The newly developed platform based on selected bacteriophages immobilized within macropores of the monolithic cryogels presents a convenient alternative to antibodies for fast and selective development of the specific adsorbent.


Subject(s)
Bacteriophages/physiology , Biological Assay/methods , Blood Proteins/chemistry , Chromatography, Affinity/methods , Fibronectins/chemistry , Hydrogels/chemistry , Peptide Library , Peptides/isolation & purification , Bacteriophages/drug effects , Biocompatible Materials/chemistry , Cryogels , Materials Testing , Peptides/pharmacology , Porosity
10.
J Sep Sci ; 30(11): 1657-71, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17623447

ABSTRACT

Macroporous gels (MGs) with a broad variety of morphologies are prepared using the cryotropic gelation technique, i. e. gelation at subzero temperatures. These highly elastic hydrophilic materials can be produced from practically any gel-forming system with a broad range of porosity extending from elastic and porous gels with pore sizes up to 1.0 microm to elastic and sponge-like gels with pore sizes up to 100 microm. The versatility of the cryogelation technique is demonstrated by use of different chemical reactions (hydrogen bond formation, chemical cross-linking of polymers, free radical polymerization) mainly in an aqueous medium. Appropriate control over solvent crystallization (formation of solvent crystals) and rate of chemical reaction during the cryogelation allows the reproducible preparation of cryogels with tailored properties. Different approaches, such as chemical modification of reactive groups, grafting of the pore surface with an appropriate polymer, or direct copolymerization with functional monomers are used for control of the surface chemistry of MGs. Typically, MGs with pore sizes up to 1.0 microm are produced in the shape of beads and MGs with pore size up to 100 microm are prepared as monoliths, discs, and sheets. The difference in porous structure of MGs defines the main applications of these porous materials. Elastic beaded MGs are mostly used as carriers for cell and enzyme immobilization or for capture of low-molecular weight targets from particulate-containing fluids in expanded-bed mode. However, the elastic and sponge-like MG monoliths with interconnected pores measuring hundreds of mum have been successfully used as monolithic columns for chromatography of particulate-containing fluids (crude cell homogenates, viruses, whole cells, wastewater effluents) and as three-dimensional scaffolds for mammalian cell culture applications.


Subject(s)
Chromatography, Liquid/methods , Gels/chemistry , Temperature , Animals , Cell Culture Techniques , Cells, Cultured , Porosity , Water/chemistry
11.
Adv Biochem Eng Biotechnol ; 106: 101-27, 2007.
Article in English | MEDLINE | ID: mdl-17558483

ABSTRACT

The preparative cell separation is an intrinsic requirement of various diagnostic, biotechnological and biomedical applications. Affinity chromatography is a promising technique for cell separation and is based on the interaction between a cell surface receptor and an immobilised ligand. Most of the currently available matrices have pore size smaller than the size of the cells and are not suitable for cell chromatography due to column clogging. Another problem encountered in chromatographic separation of cells is a difficulty to elute bound cells from affinity surfaces. Application of novel adsorbents, supermacroporous monolithic cryogels, allows overcoming these problems. Cryogels are characterised by highly interconnected large (10-100 microm) pores, sponge-like morphology and high elasticity. They are easily derivatised with any ligand of choice. Convective migration can be used to transport the cells through the matrix. Target cells bind to affinity ligands, while other cells pass through the cryogel column non-retained and are removed during a washing step. Because of the spongy and elastic nature of the cryogel matrices, the cells are efficiently desorbed by mechanical compression of cryogels, which provides high cell viability and yields. The release of affinity bound cells by mechanical compression of a cryogel monolithic adsorbent is a unique and efficient way of cell detachment. This detachment strategy and the continuous macroporous structure make cryogels very attractive for application in cell separation chromatography.


Subject(s)
Cells , Chromatography, Affinity/methods , Hydrogels , Animals
12.
J Biotechnol ; 123(3): 343-55, 2006 May 29.
Article in English | MEDLINE | ID: mdl-16406156

ABSTRACT

Monolith columns from macroporous polyacrylamide gel were grafted with polycations, poly(N,N-dimethylaminoethyl methacrylate) (polyDMAEMA), (2-(methacryloyloxy)ethyl)-trimethyl ammonium chloride (polyMETA) and partially quaternized polyDMAEMA prepared via treating polyDMAEMA-grafted columns with propylbromide. The polymer grafting degrees varied between 34 and 110%. The polycation-grafted monolithic columns are able to capture plasmid DNA directly from alkaline lysate of Escherichia coli cells. Due to the large pore size in macroporous monoliths the particulate material present in non-clarified feeds did not block the columns. The captured plasmid DNA was eluted with 1M NaCl as particulate-free preparation with significantly reduced content of protein and RNA as compared to the applied lysate.


Subject(s)
Cell Fractionation/methods , DNA, Bacterial/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Membranes, Artificial , Plasmids/isolation & purification , Polyamines/chemistry , Ultrafiltration/instrumentation , Ultrafiltration/methods , Biocompatible Materials/chemistry , Materials Testing , Polyelectrolytes , Porosity
13.
J Chromatogr A ; 1101(1-2): 79-85, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16216254

ABSTRACT

An affinity purification procedure for the direct purification of lactoferrin from defatted (skimmed) milk has been developed. The procedure is based on using selected phage clones expressing a peptide with high binding affinity for lactoferrin which were covalently coupled to macroporous poly(dimethylacrylamide) monolithic column. Large pore size (10-100 microm) of macroporous poly(dimethylacrylamide) makes it possible to couple long (1 microm) phage particles as ligands without any risk of blocking the monolithic column. Bound lactoferrin was eluted using 1M NaCl with a purity of >95%. The technique presents a good alternative to conventional immunoaffinity chromatography for purification of a protein of interest from complex samples due to (i) the robustness of the system in terms of recovery and ligand leakage and (ii) economical aspect in terms of low ligand cost.


Subject(s)
Chromatography, Affinity/methods , Lactoferrin/isolation & purification , Milk, Human/chemistry , Peptide Library , Acrylamides/chemistry , Chromatography, Affinity/instrumentation , Female , Humans , Ligands
14.
J Chromatogr A ; 1087(1-2): 38-44, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16130695

ABSTRACT

A method for high throughput screening of Green Fluorescent Proteins carrying metal binding tags in bacteria was developed. A random four amino acids tag-peptide library was successfully generated in E. coli. A 96-microtiter plate assembled with metal-iminodiacetic acid small cryogel columns was used for library screening. For the first time we were able to simultaneously screen a metal binding peptide tags library obtained from E. coli against different metal ions. From screening 25 different tags, three clones were able to bind to all metal ions studied (Ni2+, Zn2+, Co2+ and Cd2+). It was clearly demonstrated that the new construct could facilitate the screening of large peptide libraries.


Subject(s)
Affinity Labels , Chromatography, Affinity/instrumentation , Peptides/isolation & purification , Amino Acid Sequence , Base Sequence , DNA Primers , Electrophoresis, Polyacrylamide Gel , Surface Plasmon Resonance
15.
J Biotechnol ; 118(4): 421-33, 2005 Sep 10.
Article in English | MEDLINE | ID: mdl-16026882

ABSTRACT

Bacterial endotoxins (BEs) are integrated part of Escherichia coli, a microorganism widely used for the production of recombinant proteins. BEs should be eliminated in the course of down stream processing of target protein produced by these bacteria. Supermacroporous monolith (continuous bed) columns, so called cryogel columns, with immobilized polyethyleneimine (PEI), polymyxin B (PMB) and lysozyme were employed for BEs capture. Due to the large interconnected pores it was possible to use cryogel columns at flow rates as high as 10 ml/min. The columns packed with Sepharose CL-4B with immobilized PEI, PMB and lysozyme were impossible to use at these high flow rates due to the collapse of the bed. The dynamic capacities of the cryogel columns were nearly independent of the flow rate. In the presence of EDTA, BEs were quantitatively captured from mixtures with a model protein, bovine serum albumin (BSA) at pH 7.2 with practically no protein losses. At pH 3.6 BEs were captured directly from non-clarified E. coli cell lysate resulting in more than 10(4) times BEs clearance.


Subject(s)
Endotoxins/isolation & purification , Escherichia coli , Muramidase/chemistry , Polyethyleneimine/chemistry , Polymyxin B/chemistry , Chromatography, Affinity/methods , Endotoxins/chemistry , Enzymes, Immobilized/chemistry , Macromolecular Substances/chemistry , Porosity
16.
Biotechnol Prog ; 21(2): 644-9, 2005.
Article in English | MEDLINE | ID: mdl-15801813

ABSTRACT

Supermacroporous monolithic columns with Cu(2+)-IDA ligands have been successfully used for chromatographic separation of different types of microbial cells. The bed of monolithic matrix is formed by a cryogel of poly(acrylamide) cross-linked with methylenebis(acrylamide) and has a network of large (10-100 microm) interconnected pores allowing unhindered passage of whole cells through the plain cryogel column containing no ligands. Two model systems have been studied: the mixtures of wild-type Escherichia coli (w.t. E. coli) and recombinant E. coli cells displaying poly-His peptides (His-tagged E. coli) and of w.t. E. coli and Bacillus halodurans cells. Wild-type E. coli and His-tagged E. coli were quantitatively captured from the feedstock containing equal amounts of both cell types and recovered by selective elution with imidazole and EDTA, with yields of 80% and 77%, respectively. The peak obtained after EDTA elution was 8-fold enriched with His-tagged E. coli cells as compared with the peak from imidazole elution, which contained mainly weakly bound w.t. E. coli cells. Haloalkalophilic B. halodurans cells had low affinity to the Cu(2+)-IDA cryogel column and could be efficiently separated from a mixture with w.t. E. coli cells, which were retained and recovered in high yields from the column with imidazole gradient. All the cells maintained their viability after the chromatographic procedure. The results show that chromatography on affinity supermacroporous monolithic columns is a promising approach to efficient separations of individual cell types.


Subject(s)
Bacillus/isolation & purification , Chromatography, Liquid/instrumentation , Escherichia coli/isolation & purification , Microscopy, Electron, Scanning , Recombination, Genetic
17.
J Chromatogr A ; 1065(2): 169-75, 2005 Feb 18.
Article in English | MEDLINE | ID: mdl-15782962

ABSTRACT

Two steps in parallel processing of multiple biosamples, namely, sample clarification and capture of the target protein, were integrated and combined with the direct assay of captured protein using a newly developed microtiter (96-well) plate system based on the monoliths of hydrophilic elastic supermacroporous material, cryogel. Cryogel monoliths have pore size large enough for microbial and mammalian cells to pass through unretained. Moreover, cryogel monoliths are elastic allowing them to be slightly compressed and easily introduced into the wells. When expanded, cryogel monoliths fill the well tightly with no risk of leakage in between the monolith and the walls of the well. The capillary forces keep the liquid inside the pores of the cryogel monolith making the monolith columns drainage protected. The application of a certain volume of liquid on top of a cryogel monolith column results in the displacement of exactly the same volume of liquid from the column. The concept of using supermacroporous gels in 96-well plate format offers new possibilities to the biotechnologist allowing separation of particulate matter, capturing of soluble material from particle containing media, and parallel assay of large number of non-clarified samples.


Subject(s)
Chromatography/instrumentation , Cell Culture Techniques , Chromatography/methods , Culture Media , Robotics
18.
Soft Matter ; 1(4): 303-309, 2005 Sep 26.
Article in English | MEDLINE | ID: mdl-32646121

ABSTRACT

Pore size and thickness of pore walls in macroporous polyacrylamide gels, so-called cryogels (pAAm-cryogels), were controlled by varying the content of monomers in the initial reaction mixture and the cross-linker used. The thickness of pore walls in pAAm-cryogels increased with increasing concentration of monomers in the initial reaction mixture. Pore volume in the supermacroporous pAAm-cryogels was in the range of 70-93% and decreased with increasing concentration of monomers in the reaction feed. The porous structure of the pAAm-cryogels was visualized using environmental scanning electron microscopy (ESEM) that allowed monitoring of the dehydration process in pAAm-cryogels. The accessibility of ligands covalently coupled to the polymer backbone for low molecular weight target, Cu() ions, and high molecular weight target, the protein lysozyme, was assessed for pAAm-cryogels produced from feeds with different monomer concentration. The amount of bound Cu() ions increased linearly with increasing monomer concentration in the reaction feed, suggesting that all ligands are equally accessible for small targets. On the contrary, lysozyme binding demonstrated a clear maximum at monomer concentration about 18% suggesting that only ligands present at the surface of pore walls are accessible for high molecular weight targets.

19.
J Mol Recognit ; 18(1): 84-93, 2005.
Article in English | MEDLINE | ID: mdl-15386616

ABSTRACT

The capture of human acute myeloid leukemia KG-1 cells expressing the CD34 surface antigen and the fractionation of human blood lymphocytes were evaluated on polyvinyl alcohol (PVA)-cryogel beads and dimethyl acrylamide (DMAAm) monolithic cryogel with immobilized protein A. The affinity ligand (protein A) was chemically coupled to the reactive PVA-cryogel beads and epoxy-derivatized monolithic cryogels through different immobilization techniques and the binding efficiency of the cell surface receptors specific antibody-labeled cells to the gels/beads was determined. The binding of cells to monolithic cryogel was higher (90-95%) compared with cryogel beads (76%). B-lymphocytes, which bound to the protein A-cryogel beads, were separated from T-lymphocytes with yields for the two cell types 74 and 85%, respectively. About 91% of the bound B-cells could be recovered without significantly impairing their viability. Our results show differences in the percentage of cell-binding to the immunosorbents caused by ligand density, flow shear forces and bond strength between the cells and the affinity surface once distinct chemical coupling of protein A, size of beads, sequence of antibody binding to protein A adsorbents, morphology and geometry of surface matrices were compared.


Subject(s)
B-Lymphocytes/immunology , Cell Separation/methods , Immunosorbents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcal Protein A/chemistry , Antigens, CD19/immunology , Antigens, CD34/immunology , Humans , Leukemia, Myeloid/immunology , Ligands , Microspheres , Staphylococcal Protein A/immunology , T-Lymphocytes/immunology
20.
J Chromatogr A ; 1045(1-2): 93-8, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15378883

ABSTRACT

The present paper describes a chromatographic capture/purification step for the recovery of proteins directly from undiluted and unclarified cell culture broths using supermacroporous dimethylacrylamide (DMAA) cryogel. The interconnected character and the size (10-100 microm) of the pores of the adsorbent make it possible to process whole cell fermentation broths without blocking the column. Cu2+-iminodiacetic acid (IDA) DMAA cryogel has been used for the isolation and purification of excreted (His)6-tagged single chain (sc) Fv antibody fragments, (His)6-scFv, from E. coli cell culture. Bound protein was recovered with 0.2 M imidazole or with 20 mM EDTA and was practically cell-free. Chromatographic capture using Cu2+-IDA cryogel column was performed at flow rates of 300 and 600 cm/h, respectively and resulted in 84-96% recovery of (His)6-scFv fragments with a purification factor of 13-15. The DMAA cryogel adsorbent is mechanically stable, can withstand harsh cleaning-in-place procedure and is relatively inexpensive. Chromatographic isolation of proteins using cryogels allows efficient removal of cells and can be operated at a flow rate as high as 600 cm/h. This novel technique has proven to be a scalable process, does not require special equipment and can be a good alternative to expanded bed adsorption and other integrated isolation techniques.


Subject(s)
Acrylamide/chemistry , Immunoglobulin Fragments/isolation & purification , Electrophoresis, Polyacrylamide Gel , Fermentation , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...