Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 240(8): e14191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38895950

ABSTRACT

AIM: Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo 2 max - a measure of oxygen uptake and physical fitness (PF). METHODS: We hypothesized that greater Vo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine). RESULTS: As hypothesized, greater Vo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators. CONCLUSION: This newly established link between Vo 2 max and LC-NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC-NA system resilience to neurodegeneration via Vo 2 max enhancement.


Subject(s)
Locus Coeruleus , Norepinephrine , Physical Fitness , Humans , Locus Coeruleus/physiology , Locus Coeruleus/metabolism , Male , Female , Aged , Physical Fitness/physiology , Norepinephrine/metabolism , Middle Aged , Oxygen Consumption/physiology , Exercise/physiology , Magnetic Resonance Imaging
3.
Brain Sci ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34679389

ABSTRACT

Yogic and meditative traditions have long held that the fluctuations of the breath and the mind are intimately related. While respiratory modulation of cortical activity and attentional switching are established, the extent to which electrophysiological markers of attention exhibit synchronization with respiration is unknown. To this end, we examined (1) frontal midline theta-beta ratio (TBR), an indicator of attentional control state known to correlate with mind wandering episodes and functional connectivity of the executive control network; (2) pupil diameter (PD), a known proxy measure of locus coeruleus (LC) noradrenergic activity; and (3) respiration for evidence of phase synchronization and information transfer (multivariate Granger causality) during quiet restful breathing. Our results indicate that both TBR and PD are simultaneously synchronized with the breath, suggesting an underlying oscillation of an attentionally relevant electrophysiological index that is phase-locked to the respiratory cycle which could have the potential to bias the attentional system into switching states. We highlight the LC's pivotal role as a coupling mechanism between respiration and TBR, and elaborate on its dual functions as both a chemosensitive respiratory nucleus and a pacemaker of the attentional system. We further suggest that an appreciation of the dynamics of this weakly coupled oscillatory system could help deepen our understanding of the traditional claim of a relationship between breathing and attention.

4.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359997

ABSTRACT

The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.


Subject(s)
Adrenergic Neurons/pathology , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Reserve/physiology , Gray Matter/diagnostic imaging , Locus Coeruleus/diagnostic imaging , Nerve Net/diagnostic imaging , Aged , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Attention/physiology , Bayes Theorem , Case-Control Studies , Cholinergic Neurons/pathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Dopaminergic Neurons/pathology , Educational Status , Exercise/physiology , Female , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Locus Coeruleus/pathology , Locus Coeruleus/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Nerve Net/pathology , Nerve Net/physiopathology , Neuroimaging , Organ Size , Serotonergic Neurons/pathology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...