Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139140

ABSTRACT

Previously developed whole-cell vaccines against Bordetella pertussis, the causative agent of whooping cough, appeared to be too reactogenic due to their endotoxin content. Reduction in endotoxicity can generally be achieved through structural modifications in the lipid A moiety of lipopolysaccharides (LPS). In this study, we found that dephosphorylation of lipid A in B. pertussis through the heterologous production of the phosphatase LpxE from Francisella novicida did, unexpectedly, not affect Toll-like receptor 4 (TLR4)-stimulating activity. We then focused on the inner core of LPS, whose synthesis has so far not been studied in B. pertussis. The kdtA and kdkA genes, responsible for the incorporation of a single 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue in the inner core and its phosphorylation, respectively, appeared to be essential. However, the Kdo-bound phosphate could be replaced by a second Kdo after the heterologous production of Escherichia coli kdtA. This structural change in the inner core affected outer-core and lipid A structures and also bacterial physiology, as reflected in cell filamentation and a switch in virulence phase. Furthermore, the eptB gene responsible for the non-stoichiometric substitution of Kdo-bound phosphate with phosphoethanolamine was identified and inactivated. Interestingly, the constructed inner-core modifications affected TLR4-stimulating activity. Whereas endotoxicity studies generally focus on the lipid A moiety, our data demonstrate that structural changes in the inner core can also affect TLR4-stimulating activity.


Subject(s)
Bordetella pertussis , Lipopolysaccharides , Toll-Like Receptor 4 , Humans , Bordetella pertussis/genetics , Bordetella pertussis/metabolism , Cell Division , Endotoxins/metabolism , Escherichia coli/metabolism , Lipid A/metabolism , Lipopolysaccharides/genetics , Lipopolysaccharides/metabolism , Mutation , Phosphates/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Whooping Cough
2.
Virulence ; 12(1): 1452-1468, 2021 12.
Article in English | MEDLINE | ID: mdl-34053396

ABSTRACT

Whole-cell vaccines against Gram-negative bacteria commonly display high reactogenicity caused by the endotoxic activity of lipopolysaccharide (LPS), one of the major components of the bacterial outer membrane. Underacylation of the lipid A moiety of LPS has been related with reduced endotoxicity in several Gram-negative species. Here, we evaluated whether the inactivation of two genes encoding lipid A acylases of Bordetella bronchiseptica, i.e. pagP and lpxL1, could be used for the development of less reactogenic vaccines against this pathogen for livestock and companion animals. Inactivation of pagP resulted in the loss of the secondary palmitate chain at position 3' of lipid A, but hardly affected the potency of the LPS to activate the Toll-like receptor 4 (TLR4). Inactivation of lpxL1 resulted in the loss of the secondary 2-hydroxy laurate group present at position 2 of lipid A and, unexpectedly, in the additional loss of the glucosamines that decorate the phosphate groups at positions 1 and 4' and in an increase in LPS molecules carrying O-antigen. The resulting LPS showed greatly reduced potency to activate TLR4 in HEK-Blue reporter cells expressing human or mouse TLR4 as well as in porcine macrophages. Characterization of the lpxL1 mutant revealed many pleiotropic phenotypes, including increased resistance to SDS and rifampicin, increased susceptibility to cationic antimicrobial peptides, decreased auto-aggregation and biofilm formation, and a tendency to decreased infectivity of macrophages, which are all related to the altered LPS structure. We suggest that the lpxL1 mutant will be useful for the generation of safer vaccines.


Subject(s)
Bordetella bronchiseptica , Lipid A , Animals , Antimicrobial Peptides , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/pathogenicity , Lipid A/chemistry , Lipopolysaccharides/toxicity , Mice , Swine , Toll-Like Receptor 4/genetics
3.
Microbes Infect ; 14(11): 979-88, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22565133

ABSTRACT

Neisseria meningitidis may be classified according to the lipooligosaccharide immunotype. We show that this classification can be achieved by PCR genotyping of the genes involved in the lipooligosaccharide inner-core biosynthesis, lpt3, lpt6, lgtG and lot3. Genotyping data correlated well (90-100%) with mass spectrometry data and was, therefore, applied to screen a random subset of recent N. meningitidis serogroup B isolates from Europe. Analysis of the proportion of the different lipooligosaccharide types highlighted the predominance of L3 strains. Surprisingly, high rates of L2 type strains were found in Spain (17%, versus 2.5% in Germany and 1.9% in the United Kingdom). Therefore, we also investigated further these Spanish L2 strains in an attempt to explain such prevalence despite the known sensitivity of L2 immunotype to complement. We explored the hypothesis that these strains express high amounts of factor H-binding protein (fHbp), but we found, on the contrary, that L2 strains express low or undetectable amounts of fHbp. Our findings suggest that, in addition to a genetic analysis, a multivalent approach may be necessary to estimate the effectiveness of a N. meningitidis serogroup B vaccine.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Lipopolysaccharides/chemistry , Meningitis, Meningococcal/microbiology , Neisseria meningitidis, Serogroup B/genetics , Antigens, Bacterial/analysis , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Genotyping Techniques , Humans , Lipopolysaccharides/metabolism , Mass Spectrometry , Neisseria meningitidis, Serogroup B/chemistry , Neisseria meningitidis, Serogroup B/metabolism , Polymerase Chain Reaction , Prevalence , Reproducibility of Results , Spain
4.
Hum Vaccin ; 6(5): 407-19, 2010 May.
Article in English | MEDLINE | ID: mdl-20953154

ABSTRACT

Cervarix™ is a prophylactic human papillomavirus (HPV)-16/18 vaccine developed for the prevention of cervical cancer. The vaccine antigens are HPV-16 and HPV-18 L1 virus-like particles (VLPs) made from baculovirus expression vector system (BEVS)-produced HPV-16 and HPV-18 L1 proteins, respectively. In this study, we demonstrate that truncation of the nuclear targeting and DNA binding signals at the C-terminus of the HPV-16 and HPV-18 L1 proteins prevented intranuclear formation of the VLPs in the host cells and led to cytoplasmic localization of the L1 proteins as shown by in situ immunogold detection and electron microscopy. Following purification, these L1 proteins were able to form VLPs. The characteristics of these HPV-16 and HPV-18 L1 VLPs were studied using various physicochemical and immunological techniques. Amino acid analysis, SDS-PAGE and western blotting demonstrated the high purity of the L1 proteins and batch-to-batch consistency. The structure of the VLPs was shown to be similar to that reported for the native virions, as evaluated by microscopic observations, protein tomography and disc centrifugation experiments. The presence of important conformation-dependent neutralizing epitopes, such as U4, V5 and J4, was confirmed by ELISA and surface plasmon resonance. Structural robustness and consistency among batches was also observed by differential scanning calorimetry and electron microscopy. Moreover, adsorption to aluminum was shown not to impair VLP structure. In conclusion, the BEVS-produced HPV-16 and HPV-18 L1 VLPs display key structural and immunological features, which contribute to the efficacy of Cervarix™ vaccination.


Subject(s)
Papillomavirus Vaccines/chemistry , Virosomes/chemistry , Virosomes/ultrastructure , Amino Acids/analysis , Blotting, Western , Capsid Proteins/chemistry , Capsid Proteins/ultrastructure , Circular Dichroism , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Microscopy, Immunoelectron , Oncogene Proteins, Viral/chemistry , Oncogene Proteins, Viral/ultrastructure , Protein Conformation , Vaccines, Virosome/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...