Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Nanotechnology ; 33(48)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35998566

ABSTRACT

Integrating self-catalyzed InAs nanowires on Si(111) is an important step toward building vertical gate-all-around transistors. The complementary metal oxide semiconductor (CMOS) compatibility and the nanowire aspect ratio are two crucial parameters to consider. In this work, we optimize the InAs nanowire morphology by changing the growth mode from Vapor-Solid to Vapor-Liquid-Solid in a CMOS compatible process. We study the key role of the Hydrogen surface preparation on nanowire growths and bound it to a change of the chemical potential and adatoms diffusion length on the substrate. We transfer the optimized process to patterned wafers and adapt both the surface preparation and the growth conditions. Once group III and V fluxes are balances, aspect ratio can be improved by increasing the system kinetics. Overall, we propose a method for large scale integration of CMOS compatible InAs nanowire on silicon and highlight the major role of kinetics on the growth mechanism.

3.
ACS Appl Mater Interfaces ; 13(30): 36492-36498, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34296846

ABSTRACT

Bismuth-antimony alloy (Bi1 - xSbx) is the first reported 3D topological insulator (TI). Among many TIs reported to date, it remains the most promising for spintronic applications thanks to its large conductivity, its colossal spin Hall angle, and the possibility to build low-current spin-orbit-torque magnetoresistive random access memories. Nevertheless, the 2D integration of TIs on industrial standards is lacking. In this work, we report the integration of high-quality rhombohedral BiSb(0001) topological insulators on a cubic GaAs(001) substrate. We demonstrate a clear epitaxial relationship at the interface, a fully relaxed TI layer, and the growth of a rhombohedral matrix on top of the cubic substrate. The antimony composition of the Bi1 - xSbx layer is perfectly controlled and covers almost the whole TI window. For optimized growth conditions, the sample generates a semiconductor band structure at room temperature in the bulk and exhibits metallic surface states at 77 K.

4.
Phys Rev Lett ; 122(18): 187702, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144896

ABSTRACT

Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semiconductor nanowires proximity coupled to a superconductor. We track the evolution of the induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a large range of magnetic field strengths and orientations. Based on realistic simulations of our devices, we reveal SOI with a strength of 0.15-0.35 eV Å. Our approach identifies the direction of the spin-orbit field, which is strongly affected by the superconductor geometry and electrostatic gates.

5.
Nanotechnology ; 30(32): 324002, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-30995632

ABSTRACT

The surface morphology of III-V semiconductor nanowires (NWs) protected by an arsenic cap and subsequently evaporated in ultrahigh vacuum is investigated with scanning tunneling microscopy and scanning transmission electron microscopy. We show that the changes of the surface morphology as a function of the NW composition and the nature of the seed particles are intimately related to the formation and reaction of surface point defects. Langmuir evaporation close to the congruent evaporation temperature causes the formation of vacancies which nucleate and form vacancy islands on {110} sidewalls of self-catalyzed InAs NWs. However, for annealing temperatures much smaller than the congruent temperature, a new phenomenon occurs: group III vacancies form and are filled by excess As atoms, leading to surface AsGa antisites. The resulting Ga adatoms nucleate with excess As atoms at the NW edges, producing monoatomic-step islands on the {110} sidewalls of GaAs NWs. Finally, when gold atoms diffuse from the seed particle onto the {110} sidewalls during evaporation of the protective As cap, Langmuir evaporation does not take place, leaving the sidewalls of InAsSb NWs atomically flat.

6.
Nano Lett ; 18(4): 2282-2287, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29513545

ABSTRACT

We report an experimental study of one-dimensional (1D) electronic transport in an InSb semiconducting nanowire. A total of three bottom gates are used to locally deplete the nanowire, creating a ballistic quantum point contact with only a few conducting channels. In a magnetic field, the Zeeman splitting of the corresponding 1D sub-bands is revealed by the emergence of conductance plateaus at multiples of e2/h, yet we find a quantized conductance pattern largely dependent on the configuration of voltages applied to the bottom gates. In particular, we can make the first plateau disappear, leaving a first conductance step of 2 e2/ h, which is indicative of a remarkable 2-fold sub-band degeneracy that can persist up to several tesla. For certain gate voltage settings, we also observe the presence of discrete resonant states producing conductance features that can resemble those expected from the opening of a helical gap in the sub-band structure. We explain our experimental findings through the formation of two spatially separated 1D conduction channels.

7.
Nat Nanotechnol ; 13(3): 192-197, 2018 03.
Article in English | MEDLINE | ID: mdl-29335565

ABSTRACT

Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1-3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6-11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12-16, and renders the topological properties inaccessible17-20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system 21 , and exclude the known alternative explanations that invoke disorder12-16 or a nonuniform chemical potential22,23.

8.
Phys Rev Lett ; 119(18): 187704, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219554

ABSTRACT

Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for the potential detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that the dependence of the critical current on the magnetic field exhibits gate-tunable nodes. This is in contrast with a well-known Fraunhofer effect, under which critical current nodes form a regular pattern with a period fixed by the junction area. Based on a realistic numerical model we conclude that the Zeeman effect induced by the magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain the observed evolution of the Josephson effect. We find the interference between the few occupied one-dimensional modes in the nanowire to be the dominant mechanism responsible for the critical current behavior. We also report a strong suppression of critical currents at finite magnetic fields that should be taken into account when designing circuits based on Majorana bound states.

9.
Nat Commun ; 8(1): 585, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928420

ABSTRACT

Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

10.
Sci Adv ; 3(9): e1701476, 2017 09.
Article in English | MEDLINE | ID: mdl-28913432

ABSTRACT

Topological superconductivity is an exotic state of matter characterized by spinless p-wave Cooper pairing of electrons and by Majorana zero modes at the edges. The first signature of topological superconductivity is a robust zero-bias peak in tunneling conductance. We perform tunneling experiments on semiconductor nanowires (InSb) coupled to superconductors (NbTiN) and establish the zero-bias peak phase in the space of gate voltage and external magnetic field. Our findings are consistent with calculations for a finite-length topological nanowire and provide means for Majorana manipulation as required for braiding and topological quantum bits.

11.
Nat Commun ; 8: 16025, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28681843

ABSTRACT

Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

12.
Nano Lett ; 17(11): 6511-6515, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28665621

ABSTRACT

Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior.

13.
Nano Lett ; 17(4): 2690-2696, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28355877

ABSTRACT

Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

14.
Nano Lett ; 17(2): 721-727, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28173706

ABSTRACT

Majorana zero modes (MZMs), prime candidates for topological quantum bits, are detected as zero bias conductance peaks (ZBPs) in tunneling spectroscopy measurements. Implementation of a narrow and high tunnel barrier in the next generation of Majorana devices can help to achieve the theoretically predicted quantized height of the ZBP. We propose a material-oriented approach to engineer a sharp and narrow tunnel barrier by synthesizing a thin axial segment of GaxIn1-xSb within an InSb nanowire. By varying the precursor molar fraction and the growth time, we accurately control the composition and the length of the barriers. The height and the width of the GaxIn1-xSb tunnel barrier are extracted from the Wentzel-Kramers-Brillouin (WKB) fits to the experimental I-V traces.

15.
Nanotechnology ; 27(45): 454003, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27727149

ABSTRACT

Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

16.
Nano Lett ; 16(5): 3071-7, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27045232

ABSTRACT

Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration. Here, we discuss doping of single-crystalline ⟨100⟩ nanowires, and the structural and optoelectronic properties of p-n junctions based on ⟨100⟩ InP nanowires. We describe a novel approach to achieve low resistance electrical contacts to nanowires via a gradual interface based on p-doped InAsP. As a first demonstration in optoelectronic devices, we realize a single nanowire light emitting diode in a ⟨100⟩-oriented InP nanowire p-n junction. To obtain high vertical yield, which is necessary for future applications, we investigate the effect of the introduction of dopants on the nanowire growth.

17.
Nano Lett ; 16(6): 3482-6, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27121534

ABSTRACT

Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one-dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally we study the contribution of orbital effects to the sub-band dispersion for different orientation of the magnetic field, observing a near-degeneracy between the second and third sub-bands.

18.
Nano Lett ; 16(2): 825-33, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26733426

ABSTRACT

Ultra narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing advanced nanoelectronics, thermoelectrics, infrared photodetection, and quantum transport physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb nanostructures exhibiting superior electronic performance. Through careful morphological and crystallographic characterization we show how this unique geometry is the result of a single twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements performed in both the Hall and van der Pauw configurations reveal a room temperature electron mobility greater than 12,000 cm(2)·V(-1)·s(-1). Quantized conductance in a quantum point contact processed with a split-gate configuration is also demonstrated. We thus introduce InSb "nanosails" as a versatile and convenient platform for realizing new device and physics experiments with a strong interplay between electronic and spin degrees of freedom.

19.
Nanotechnology ; 26(21): 215202, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25944822

ABSTRACT

We study the low-temperature electron mobility of InSb nanowires. We extract the mobility at 4.2 K by means of field effect transport measurements using a model consisting of a nanowire-transistor with contact resistances. This model enables an accurate extraction of device parameters, thereby allowing for a systematic study of the nanowire mobility. We identify factors affecting the mobility, and after optimization obtain a field effect mobility of [Formula: see text] cm(2) V(-1) s(-1). We further demonstrate the reproducibility of these mobility values which are among the highest reported for nanowires. Our investigations indicate that the mobility is currently limited by adsorption of molecules to the nanowire surface and/or the substrate.

20.
Adv Mater ; 26(28): 4875-9, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24753042

ABSTRACT

Rational bottom-up assembly of nanowire networks may be a way to successfully continue the miniaturization in the semiconductor industry. A generic method is developed that ensures InSb nanowires meet under the optimal angle for the formation of single-crystalline structures, which represents a promising platform for the future random access memories based on Majorana fermions.

SELECTION OF CITATIONS
SEARCH DETAIL
...