Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(8): 083502, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872905

ABSTRACT

Cryogenic pellet injection will be the prime candidate to fuel future fusion power plants. In order to harvest optimum fueling performance, it is essential to inject pellets from the magnetic high field side of the tokamak. The pellet launching system of the tokamak ASDEX Upgrade injects cryogenic hydrogen pellets with a speed of up to 1000 m/s from the magnetic high field side via curved guiding tubes. Pellets passing the guiding tube are sliding on a gas cushion, generated by the Leidenfrost effect. The actual track has a rectangular cross section and is composed of a series of ellipses in order to generate the required 270° looping type turn; the path length is 17 m. The last part of this track is marked by strong geometrical constraints from the vacuum vessel port. The previous design was composed of a sequence of three sections of ellipses too, tangentially constant but discontinuous with regard to the curvature. It had been in operation for almost 20 years. Its steps in the curvature are supposed to limit the system performance. A novel and advanced geometry concept, adopting a method well-known from civil engineering (e.g., for the railroad track design), has been applied to develop an improved design. It relies on clothoid shape sections keeping the track curvatures continuous and, thus, provides a smooth transition between all the elements. The new design presented improves the pellet launching system performance on ASDEX Upgrade and provides knowledge for an advanced design of pellet guiding tubes in future fusion devices.

2.
Rev Sci Instrum ; 88(3): 033508, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372397

ABSTRACT

A new high speed gas valve was developed for disruption mitigation studies in the tokamak ASDEX Upgrade. The valve was designed to operate inside the vacuum vessel to reduce the time of flight of the injected gas and to prevent dispersion of the gas cloud before the gas reaches the plasma. A spring-driven mechanism was chosen for the valve as it is robust against the high magnetic fields and electromagnetic disturbances inside the vessel. The internal gas reservoir (128 cm3) of the valve, which holds the mitigation gas, is opened within 1.5 ms, and the maximal stroke between the valve plate and nozzle (diameter 13 mm) is 4.5 mm. This allows a peak flow rate of 72 kPam3/s after 1 ms which was determined both analytically and numerically. The highest gas velocity (approximately 560 m/s) is reached 0.6 ms after the valve is opened. The gas cloud expands in a pear shape with an opening angle of 49°.

3.
Rev Sci Instrum ; 87(2): 023508, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931850

ABSTRACT

Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repetition rate is about 2 Hz. Free flight launch from the torus outboard side without a guiding tube was realized. In such a configuration, angular dispersion and speed scatter are low, and a transfer efficiency exceeding 90% was achieved in the test bed. Pellets are accelerated in a gas gun; hence special care was taken to avoid deleterious effects by the propellant gas pulse. Therefore, the main plasma gas species was applied as propellant gas, leading to speeds ranging from 420 m/s to 700 m/s. In order to minimize the residual amount of gas to be introduced into the plasma vessel, a large expansion volume equipped with a cryopump was added into the flight path. In view of the experiments, an optimal propellant gas pressure of 50 bars was chosen for operation, since at this pressure maximum efficiency and low propellant gas flux coincide. This led to pellet speeds of 585 m/s ± 32 m/s. Lithium injection has been achieved at ASDEX Upgrade, showing deep pellet penetration into the plasma, though pedestal broadening has not been observed yet.

SELECTION OF CITATIONS
SEARCH DETAIL
...