Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Biomech ; 172: 112209, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38986274

ABSTRACT

Micro-Finite Element analysis (µFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (µCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a µCT-based input with FFB-LEM required about 15 min, including conversion of the µCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).

2.
Med Eng Phys ; 129: 104181, 2024 07.
Article in English | MEDLINE | ID: mdl-38906568

ABSTRACT

Anchorage, evaluated by the maximum insertion torque (IT), refers to mechanical engagement between dental implant and host bone at the time of insertion without external loads. Sufficient anchorage has been highly recommended in the clinic. In several studies, the effects of implant diameter and taper body design under external loading have been evaluated after insertion; however, there are few studies, in which their effects on stress distribution during insertion have been investigated to understand establishment of anchorage. Therefore, the objective of this study was to investigate the effects of dental implant diameter and tapered body design on anchorage combining experiments, analytical modeling, and finite element analysis (FEA). Two implant designs (parallel-walled and tapered) with two implant diameters were inserted into rigid polyurethane (PU) foam with corresponding straight drill protocols. The IT was fit to the analytical model (R2 = 0.88-1.0). The insertion process was modeled using explicit FEA. For parallel-walled implants, normalized IT and final FEA contact ratio were not related to the implant diameter while the implant diameter affected normalized IT (R2 = 0.90, p < 0.05, ß1 = 0.20 and ß2 = 0.93, standardized regression coefficients for implant diameter and taper body design) and final FEA contact ratio of tapered implants. The taper design distributed the PU foam stress further away from the thread compared to parallel-walled implants, which demonstrated compression in PU foam established by the tapered body during insertion.


Subject(s)
Dental Implants , Stress, Mechanical , Polyurethanes , Finite Element Analysis , Bone Screws
3.
J Mech Behav Biomed Mater ; 153: 106470, 2024 May.
Article in English | MEDLINE | ID: mdl-38422872

ABSTRACT

Previous ex vivo bone culture methods have successfully implemented polycarbonate (PC) bioreactors to investigate bone adaptation to mechanical load; however, they are difficult to fabricate and have been limited to a 5 mm maximum specimen height. The objective of this study was to validate a custom-made 3D printed MED610TM bioreactor system that addresses the limitations of the PC bioreactor and assess its efficacy in ex vivo bone culture. Twenty-three viable trabecular bone cores (10 mm height by 10 mm diameter) from an 18-month-old bovine sternum were cultured in MED610TM bioreactors with culture medium at 37 °C and 5% CO2 for 21-days. Bone cores were ranked based on their day 0 apparent elastic modulus (Eapp) and evenly separated into a "Load" group (n = 12) and a control group (n = 11). The Load group was loaded five times per week with a sinusoidal strain waveform between -1000 and -5000 µÎµ for 120 cycles at 2 Hz. Eapp was assessed on day 0, 8, and 21 using quasi-static tests with a -4000 µÎµ applied strain. Over 21-days, the Eapp of Load group samples tended to increase by more than double the control group (53.4% versus 20.9%) and no visual culture contamination was observed. This study demonstrated that bone organ culture in 3D printed MED610TM bioreactors replicated Eapp trends found in previous studies with PC bioreactors. However, further studies are warranted with a larger sample size to increase statistical power and histology to assess cell viability and bone mineral apposition rate.


Subject(s)
Bone and Bones , Cancellous Bone , Animals , Cattle , Elastic Modulus , Bioreactors , Printing, Three-Dimensional
4.
J Mech Behav Biomed Mater ; 150: 106297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100980

ABSTRACT

Aseptic loosening due to mechanical failure of bone cement is considered to be a leading cause of revision of joint replacement systems. Detailed quantified information on the number, size and distribution pattern of pores can help to obtain a deeper understanding of the bone cement's fatigue behavior. The objective of this study was to provide statistical descriptions for the pore distribution characteristics of laboratory bone cement specimens with different amounts of antibiotic contents. For four groups of bone cement (Palacos) specimens, containing 0.3, 0.6, 1.2 and 2.4 wt/wt% of telavancin antibiotic, seven samples per group were micro computed tomography scanned (38.97 µm voxel size). The images were first preprocessed in Mimics and then analyzed in Dragonfly, with the level of threshold being set such that single-pixel pores become visible. The normalized pore volume data of the specimens were then used to extract the logarithmic histograms of the pore densities for antibiotic groups, as well as their three-parameter Weibull probability density functions. Statistical comparison of the pore distribution data of the antibiotic groups using the Mann-Whitney non-parametric test revealed a significantly larger porosity (p < 0.05) in groups with larger added antibiotic contents (2.4 and 0.6 wt/wt% vs 0.3 wt/wt%). Further analysis revealed that this effect was associated with the significantly larger frequency of micropores of 0.1-0.5 mm diameter (p < 0.05) in groups with larger antibiotic content (2.4 wt/wt% vs and 0.6 and 0.3 wt/wt%), implying that the elution of the added antibiotic produces micropores in this diameter range mainly. Based on this observation and the fatigue test results in the literature, it was suggested that micropore clusters have a detrimental effect on the mechanical properties of bone cement and play a major role in initiating fatigue cracks in highly antibiotic added specimens.


Subject(s)
Odonata , Polymethyl Methacrylate , Animals , Anti-Bacterial Agents , Bone Cements , X-Ray Microtomography , Statistical Distributions
6.
J Biomech ; 147: 111434, 2023 01.
Article in English | MEDLINE | ID: mdl-36638579

ABSTRACT

This study sought to 1) investigate the spatial distribution of mineral density of dog dentin using µ-CT and 2) characterize the relationship between the elastic modulus and mineral density of dog dentin using nanoindentation and µ-CT. Maxillary canine teeth of 10 mature dogs were scanned with a µ-CT then sectioned in the transverse and vertical planes and tested using nanoindentation. Spatial distribution of mineral density and elastic modulus was quantified. Results demonstrated significant spatial variation in mineral density and elastic modulus. Mineral density and elastic modulus generally increased from the dentin-pulp interface to the dentino-enamel junction and from the crown base to the crown tip. Significant site dependent correlations between mineral density and elastic modulus were determined (0.021 > R2 > 0.408). The results of this study suggest that while mineral density is a mediator of elastic modulus, other mediators such as collagen content may contribute to the mechanical behavior of dog dentin.


Subject(s)
Dentin , Tooth , Animals , Dogs , Elastic Modulus , Dentin/diagnostic imaging , Minerals , Tomography, X-Ray Computed , Hardness
7.
Ann Anat ; 246: 152041, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526093

ABSTRACT

Canine tooth shape is known to vary with diet and killing behavior in wild animals and the relationship between form and function is driven in part by selective pressure. However, comparative investigation of the domestic dog (Canis lupus familiaris) is of interest. How do they compare to their wild counterparts? This study sought to quantify and characterize the morphology of the canine tooth in the domestic dog, and to provide a preliminary investigation into the variance in canine tooth morphology across individual dogs of varying breeds. Three-dimensional (3D) models generated from micro-computed tomography (µ-CT) studies of 10 mature maxillary canine teeth from the domesticated dog (Canis lupus familiaris) were used to quantify key morphological features and evaluate variance among dogs. Results show that, utilizing modern imaging and model building software, the morphology of the canine tooth can be comprehensively characterized and quantified. Morphological variables such as second moment of area and section modulus (geometrical parameters related to resistance to bending), as well as aspect ratio, ridge sharpness, cusp sharpness and enamel thickness are optimized in biomechanically critical areas of the tooth crown to balance form and function. Tooth diameter, second moment of area, section modulus, cross sectional area, tooth volume and length as well as enamel thickness are highly correlated with body weight. In addition, we found preliminary evidence of morphological variance across individual dogs. Quantification of these features provide insight into the balance of form and function of the canine tooth in wild and domesticated canids. In addition, results suggest that variance between dogs exist in some morphological features and most morphological features are highly correlated with body weight.


Subject(s)
Cuspid , Wolves , Animals , Dogs , Cuspid/diagnostic imaging , X-Ray Microtomography , Animals, Wild
8.
Polymers (Basel) ; 14(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36433144

ABSTRACT

Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus Eapp, bulk yield stress σy and yield strain εy-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean Eapp of 60% and 95%, respectively. σy was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean σy values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.

9.
J Biomech ; 141: 111218, 2022 08.
Article in English | MEDLINE | ID: mdl-35834939

ABSTRACT

Investigations into teeth mechanical properties provide insight into physiological functions and pathological changes. This study sought to 1) quantify the spatial distribution of elastic modulus, hardness and the microstructural features of dog dentin and to 2) investigate quantitative relationships between the mechanical properties and the complex microstructure of dog dentin. Maxillary canine teeth of 10 mature dogs were sectioned in the transverse and vertical planes, then tested using nanoindentation and scanning electron microscopy (SEM). Microstructural features (dentin area fraction and dentinal tubule density) and mechanical properties (elastic modulus and hardness) were quantified. Results demonstrated significant anisotropy and spatial variation in elastic modulus, hardness, dentin area fraction and tubule density. These spatial variations adhered to a consistent distribution pattern; hardness, elastic modulus and dentin area fraction generally decreased from superficial to deep dentin and from crown tip to base; tubule density generally increased from superficial to deep dentin. Poor to moderate correlations between microstructural features and mechanical properties (R2 = 0.032-0.466) were determined. The results of this study suggest that the other constituents may contribute to the mechanical behavior of mammalian dentin. Our results also present several remaining opportunities for further investigation into the roles of organic components (e.g., collagen) and mineral content on dentin mechanical behavior.


Subject(s)
Dentin , Tooth , Animals , Dogs , Elastic Modulus , Hardness , Mammals , Microscopy, Electron, Scanning , Structure-Activity Relationship
10.
J Mech Behav Biomed Mater ; 131: 105223, 2022 07.
Article in English | MEDLINE | ID: mdl-35436718

ABSTRACT

Maximum insertion torque (IT) for threaded dental implants is a primary clinical measurement to assess implant anchorage, and strongly influences the clinical outcome. Insertion torque is influenced by surgical technique, implant designs, and patient factors such as bone density and quality. In this study, an analytical model was proposed for IT to estimate contributions from the thread and taper separately. The purpose of this study was to test if the analytical model could 1. differentiate the parallel-walled and tapered implant; and, 2. represent four factors: bone surrogate density, drill protocol, implant surface finish and cutting flute. The IT was modeled as the sum of the torques from the thread's inclined plane and interface shear stress from the tapered body integrated over the surface area, respectively, with two main parameters: effective force, F', F' and effective pressure, p'. The effective force, relates to the clamping force from the thread, while the effective pressure, p', associates with the contact pressure at the bone-implant interface. The model performed well (R2 = 0.88-1.0) and differentiated between the parallel-walled (p'= 0) and tapered implants (p'= 0.12). The model's parameters could individually represent the effects of the four factors. High bone surrogate density, two-step drill protocol, and rough surface increased both F' and p'. The cutting flute had opposing effects on F' and p' (ß4 = 0.35 and -0.24, respectively); and therefore, had the lowest net effect on IT. The proposed analytical model therefore improves the understanding of the principal contributors to dental implant IT by considering thread and taper mechanics independently.


Subject(s)
Dental Implants , Bone Density , Dental Prosthesis Design , Humans , Mechanical Phenomena , Stress, Mechanical , Torque
11.
JSES Int ; 6(1): 32-39, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35141673

ABSTRACT

BACKGROUND: To improve implant survival after reverse shoulder arthroplasty (RSA), surgeons need to maximize screw fixation. However, bone density variation and distribution within the scapula are not well understood as they relate to RSA. The three columns of bone in the scapula surrounding the glenoid fossa are the lateral border, the base of the coracoid process, and the spine of the scapula. In our previous study by Daalder et al on cadaveric specimens, the coracoid column was significantly less dense than the lateral border and spine. This study's objective was to verify whether these results are consistent with computer tomography (CT) scan information from patients undergoing RSA. METHODS: Two-dimensional axial CT images from twelve patients were segmented, and a three-dimensional digital model of the scapula was subsequently created using Mimics 17.0 Materialise Software (Leuven, Belgium). Hounsfield unit (HU) values representing cortical bone were filtered out to determine the distributions of trabecular bone density. An analysis of variance with post hoc Bonferroni tests determined the differences in bone density between the columns of bone in the scapula. RESULTS: The coracoid superolateral (270 ± 45.6 HU) to the suprascapular notch was significantly less dense than the inferior (356 ± 63.6 HU, P = .03, ds = 1.54) and anterosuperior portion of the lateral border (353 ± 68.9 HU, P = .04, ds = 1.42) and the posterior (368 ± 70 HU, P = .007, ds = 1.65) and anterior spine (370 ± 78.9 HU, P = .006, ds = 1.54). DISCUSSION/CONCLUSION: The higher-density bone in the spine and lateral border compared with the coracoid region may provide better bone purchase for screws when fixing the glenoid baseplate in RSA. This is in agreement with our previous study and indicates that the previous cadaveric results are applicable to clinical CT scan data. When these studies are taken together, they provide robust evidence for clinical applications, including having surgeons aim screws for higher-density regions to increase screw fixation, which may decrease micromotion and improve implant longevity.

12.
J Shoulder Elbow Surg ; 31(7): 1385-1392, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35172207

ABSTRACT

BACKGROUND: Reverse shoulder arthroplasty (RSA) is commonly used to treat patients with rotator cuff tear arthropathy. Loosening of the glenoid component remains one of the principal modes of failure and represents a significant complication that requires revision surgery. This study assessed the effects of various factors on glenoid baseplate micromotion for primary fixation of RSA. MATERIALS AND METHODS: A half-fractional factorial design of experiment was used to assess 4 factors: central element type (central peg or screw), central cortical engagement according to length (13.5 or 23.5 mm), anterior-posterior peripheral screw type (nonlocking or locking), and cancellous bone surrogate density (160 or 400 kg/m3, 10 or 25 PCF). Glenoid baseplates were implanted into high- or low-density Sawbones rigid polyurethane foam blocks and cyclically loaded at 60° for 1000 cycles (500-N compressive force range) using a custom-designed loading apparatus. Micromotion at the 4 peripheral screw positions was recorded using linear variable differential transformers. RESULTS: Central peg fixation generated 358% greater micromotion at all peripheral screw positions compared with central screw fixation (P < .001). Baseplates with short central elements that lacked cortical bone engagement generated 328% greater micromotion than those with long central elements (P = .001). No significant effects were observed when varying anterior-posterior peripheral screw type or bone surrogate density. There were significant interactions between central element type and length (P < .001). DISCUSSION: A central screw and a long central element that engaged cortical bone reduced RSA baseplate micromotion. These findings serve to inform surgical decision making regarding baseplate fixation elements to minimize the risk of glenoid loosening and, thus, the need for revision surgery.


Subject(s)
Arthroplasty, Replacement, Shoulder , Glenoid Cavity , Shoulder Joint , Arthroplasty , Biomechanical Phenomena , Glenoid Cavity/surgery , Humans , Scapula/surgery , Shoulder Joint/surgery
13.
J Biomech Eng ; 144(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34286825

ABSTRACT

Aseptic loosening is the most common reason for the long-term revision of cemented arthroplasties with fracture of the cement being a postulated cause or contributing factor. In our previous studies we showed that adding an antibiotic to a polymethylmethacrylate (PMMA) bone cement led to detrimental effects on various mechanical properties of the cement such as bending strength, compressive strength and fracture toughness (KIC). This finding implied that the mechanical failure of antibiotic-loaded PMMA bone cement was influenced by its pore volume fraction. Up to now this aspect has not been studied. Hence the purposes of this study were to determine (1) the influence of antibiotic (telavancin) loading on the KIC of a widely used PMMA bone cement brand (Palacos®R) and (2) the influence of pore size and pore distribution on the fracture behavior of the KIC specimens. For (2) both experimental and numerical methods (extended finite element method [XFEM]) were used allowing a comparison between the two sets of results. We found that: (1) KIC decreased with increased porosity with the drop (relative to the value for the control cement) being significant when the telavancin loading was 4.8 wt/wt % (2 g of telavancin added to 40 g of control cement powder); (2) there was a critical pore size above which there was a significant decrease in KIC and is 1 mm; (3) crack propagation was strongly influenced by pore size and pore locations (pore-pore interactions); and, (4) there was good agreement between the experimental and XFEM results. The implications of these findings for the use of a telavancin-loaded PMMA bone cement in cemented total joint arthroplasties are commented upon.


Subject(s)
Bone Cements , Polymethyl Methacrylate , Anti-Bacterial Agents , Compressive Strength , Porosity
14.
Proc Inst Mech Eng H ; 235(8): 849-860, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33899568

ABSTRACT

One fifth of idiopathic clubfoot deformities cannot be fully corrected by Serial Ponseti casting and deformity recurs in 20%-30% of cases. To avoid x-ray exposure, the joints with largely unossified bones are diagnosed with magnetic resonance images (MRI). Typically, geometric measurements are made in the MRI planes; however, this method is inaccurate compared to measurements on three-dimensional (3D) models of the joint. More accurate measurements using the 3D bone shapes may be better at identifying differences between groups; and therefore, improve diagnosis. The entire set of shape features from MRI can be analysed simultaneously through statistical shape modelling (SSM) which assesses bone morphology of clubfoot in a more sensitive way. A method for SSM of the talus is developed in this study and the shape of the normal talus is compared with the one in clubfeet with residual deformity through both geometric measurements and SSM. Significant differences between two groups were found by both methods; and therefore, might contribute to improve diagnosis of clubfoot.


Subject(s)
Clubfoot , Talus , Casts, Surgical , Child , Clubfoot/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Models, Statistical , Radiography , Talus/diagnostic imaging , Treatment Outcome
15.
J Mech Behav Biomed Mater ; 115: 104253, 2021 03.
Article in English | MEDLINE | ID: mdl-33360160

ABSTRACT

Methods used to evaluate bone mechanical properties vary widely depending on the motivation and environment of individual researchers, clinicians, and industries. Further, the innate complexity of bone makes validation of each method difficult. Thus, the purpose of the present research was to quantify methodological error of the most common methods used to predict long-bone bending stiffness, more specifically, flexural rigidity (EI). Functional testing of a bi-material porcine bone surrogate, developed in a previous study, was conducted under four-point bending test conditions. The bone surrogate was imaged using computed tomography (CT) with an isotropic voxel resolution of 0.625 mm. Digital image correlation (DIC) of the bone surrogate was used to quantify the methodological error between experimental, analytical, and computational methods used to calculate EI. These methods include the application of Euler Bernoulli beam theory to mechanical testing and DIC data; the product of the bone surrogate composite bending modulus and second area moment of inertia; and finite element analysis (FEA) using computer-aided design (CAD) and CT-based geometric models. The methodological errors of each method were then compared. The results of this study determined that CAD-based FEA was the most accurate determinant of bone EI, with less than five percent difference in EI to that of the DIC and consistent reproducibility of the measured displacements for each load increment. CT-based FEA was most accurate for axial strains. Analytical calculations overestimated EI and mechanical testing was the least accurate, grossly underestimating flexural rigidity of long-bones.


Subject(s)
Bone and Bones , Tomography, X-Ray Computed , Biomechanical Phenomena , Finite Element Analysis , Reproducibility of Results
16.
J Mech Behav Biomed Mater ; 112: 103995, 2020 12.
Article in English | MEDLINE | ID: mdl-32882675

ABSTRACT

Anchorage of dental implants is quantified with a mechanical engagement to insertion, for example maximum insertion torque (MIT) and insertion energy (IE). Good anchorage of dental implants highly correlates to positive clinical outcomes. However, it is still unclear how bone density, drill protocol, surface finish and cutting flute affect anchorage. In this study, effects of the insertion factors on both MIT and IE were investigated using a full-factorial experiment at two levels: bone surrogate density (0.32 g/cm3 versus 0.48 g/cm3), drill protocol (Ø2.4/2.8 versus Ø2.8/3.2 mm), implant surface finish (machined versus anodized surface) and cutting flute (with versus without). Osteotomies were prepared on rigid polyurethane foam blocks with dimensions of 40 × 40 × 8 mm. Screw shaped dental implants with variable tapered body were consecutively inserted into and removed from the polyurethane foam blocks three times under constant axial displacement and rotational speed. Axial force and torque were recorded synchronously. Insertion energy was calculated from the area under the torque-displacement curve. In this study, we found the main insertion mechanics were thread forming for the first insertion. For the second and third insertions, the main mechanics shifted to thread tightening. Maximum insertion torque (MIT) responded differently to the four insertion factors in comparison to IE. Bone surrogate density, drill protocol and surface finish had the largest main effects for first MIT. For the first IE, drill protocol, surface finish and cutting flute were significant contributors. These results suggest that MIT and IE are influenced by different mechanics: the first MIT and the first IE were sensitive to thread tighten and forming, respectively. Together MIT and IE provide a complete assessment of dental implant anchorage.


Subject(s)
Dental Implants , Bone Density , Bone Screws , Dental Prosthesis Design , Dental Stress Analysis , Mechanical Phenomena , Torque
18.
J Mech Behav Biomed Mater ; 103: 103588, 2020 03.
Article in English | MEDLINE | ID: mdl-32090917

ABSTRACT

Prosthetic joint infection (PJI) is one of the most devastating failures in total joint replacement (TJR). Infections are becoming difficult to treat due to the emergence of multi-drug resistant bacteria. These bacteria produce biofilm on the implant surface, rendering many antibiotics ineffective by compromising drug diffusion and penetration into the infected area. With the introduction of new antibiotics there is a need to create benchmark data from the traditional antibiotic loaded bone cements. Vancomycin, one of the commonly used antibiotics, shows activity against Methicillin-resistant Staphylococcus aureus (MRSA) and S.epidermidis. In our study, vancomycin added to bone cement was evaluated for elution properties, antimicrobial properties, and mechanical properties of the bone cement. Vancomycin at five different loading masses (0.125, 0.25, 0.5, 1.0 and 2.0 g) was added to 40 g of Simplex™ P cement. Addition of vancomycin affected the mechanical properties and antimicrobial activity with significant differences from controls. Flexural and compression mechanical properties were compromised with added vancomycin. The flexural strength of samples with added vancomycin of 0.5 g and greater were not greater than ISO 5833 minimum requirements. 2.0 g of vancomycin added to bone cement was able to eliminate completely the four bacterial strains tested. 2.0 g of vancomycin also showed the highest mass elution from the cement over a 60-day period. Given the reduced flexural strength in samples with 0.5 g and greater of added vancomycin and the inability of vancomycin in amounts less than 2.0 g to eliminate bacteria, this study did not find an ideal amount of vancomycin added to Simplex™ P that meets both strength and antibacterial requirements.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Vancomycin , Anti-Bacterial Agents/pharmacology , Bone Cements , Polymethyl Methacrylate , Vancomycin/pharmacology
19.
J Mech Behav Biomed Mater ; 88: 346-351, 2018 12.
Article in English | MEDLINE | ID: mdl-30199837

ABSTRACT

The high incidence of osteoporosis and related fractures demands for the use and development of methods capable of detecting changes in bone mechanical properties. The most common clinical and laboratory methods used to detect changes in bone mechanical properties, such as stiffness, strength, or flexural rigidity, include: mechanical testing, medical imaging, medical image-based analytical calculations, and medical image-based finite element analysis. However, the innate complexity of bone makes validation of the results from each method difficult. The current study presents the design, fabrication, and functional testing of a bi-material and computed tomography scan compatible bone-surrogate which provides consistent reproducible mechanical properties for methodological evaluation of experimental, analytical, and computational bone bending stiffness prediction methods.


Subject(s)
Biomimetics/methods , Bone and Bones/physiology , Mechanical Phenomena , Biomechanical Phenomena , Biomimetics/instrumentation , Finite Element Analysis , Materials Testing , Osteoporosis , Tomography, X-Ray Computed
20.
Data Brief ; 20: 14-19, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30101160

ABSTRACT

In this article, we report data on the antibiotic elution and efficacy, and mechanical properties of Palacos bone cement with different amounts of added vancomycin (0.0, 0.125, 0.25, 0.5, 1.0, 2.0 g), see "Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement" (Bishop et al., 2018) [1]. Mechanical testing was performed for four-point bending, compression, and fracture toughness. The release characteristics of vancomycin was recorded for up to 60 days to estimate the elution profile. The eluted vancomycin efficacy at eliminating the four most common causative orthopedic implant pathogens is also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...