Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 371(6532)2021 02 26.
Article in English | MEDLINE | ID: mdl-33361116

ABSTRACT

Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , Antibodies, Viral/chemistry , COVID-19/physiopathology , Cells, Cultured , Critical Illness , Cytomegalovirus/immunology , Female , Fucose/analysis , Glycosylation , HIV/immunology , Hepatitis B Vaccines/immunology , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Inflammation , Interleukin-6/biosynthesis , Interleukin-6/immunology , Macrophages/immunology , Male , Middle Aged , Parvovirus B19, Human/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Young Adult
2.
Sci Rep ; 10(1): 12560, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703963

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 9995, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292524

ABSTRACT

The precise mechanisms underlying anti-inflammatory effects of intravenous immunoglobulin (IVIg) therapies remain elusive. The sialylated IgG fraction within IVIg has been shown to be therapeutically more active in mouse models. Functionally, it has been suggested that IgG undergoes conformational changes upon Fc-sialylation which sterically impede binding to conventional FcγRs, but simultaneously allow binding to human DC-SIGN (SIGN-R1 in mice) and also CD23. These latter C-type lectins have been proposed responsible for the immunomodulatory effects in mouse models. However, there is conflicting evidence supporting direct interactions between sialylated human IgG and CD23/DC-SIGN. While cells expressing human CD23 and DC-SIGN in their native configuration bound their natural ligands IgE and ICAM-3, respectively, no IgG binding was observed, regardless of Fc-glycan sialylation in any context (with or without bisection and/or fucosylation) or presence of sialylated Fab-glycans. This was tested by both by FACS and a novel cellular Surface Plasmon Resonance imaging (cSPRi) approach allowing for monitoring low-affinity but high-avidity interactions. In summary, we find no evidence for human CD23 or DC-SIGN being bona fide receptors to human IgG, regardless of IgG Fc- or Fab-glycosylation status. However, these results do not exclude the possibility that either IgG glycosylation or C-type lectins affect IVIg therapies.


Subject(s)
Cell Adhesion Molecules/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Receptors, IgE/metabolism , Biosensing Techniques/methods , Flow Cytometry , Glycosylation , HEK293 Cells , Humans , Immunoglobulin E/metabolism , Immunoglobulin Fab Fragments/chemistry , Surface Plasmon Resonance
4.
Front Immunol ; 9: 129, 2018.
Article in English | MEDLINE | ID: mdl-29445378

ABSTRACT

After albumin, immunoglobulin G (IgG) are the most abundant proteins in human serum, with IgG1 and IgG3 being the most abundant subclasses directed against protein antigens. The quality of the IgG-Fc-glycosylation has important functional consequences, which have been found to be skewed toward low fucosylation in some antigen-specific immune responses. This increases the affinity to IgG1-Fc-receptor (FcγR)IIIa/b and thereby directly affects downstream effector functions and disease severity. To date, antigen-specific IgG-glycosylation have not been analyzed for IgG3. Here, we analyzed 30 pregnant women with anti-K alloantibodies from a prospective screening cohort and compared the type of Fc-tail glycosylation of total serum- and antigen-specific IgG1 and IgG3 using mass spectrometry. Total serum IgG1 and IgG3 Fc-glycoprofiles were highly similar. Fc glycosylation of antigen-specific IgG varied greatly between individuals, but correlated significantly with each other for IgG1 and IgG3, except for bisection. However, although the magnitude of changes in fucosylation and galactosylation were similar for both subclasses, this was not the case for sialylation levels, which were significantly higher for both total and anti-K IgG3. We found that the combination of relative IgG1 and IgG3 Fc-glycosylation levels did not improve the prediction of anti-K mediated disease over IgG1 alone. In conclusion, Fc-glycosylation profiles of serum- and antigen-specific IgG1 and IgG3 are highly similar.


Subject(s)
Erythrocytes/immunology , Immunoglobulin G/immunology , Isoantibodies/immunology , Membrane Glycoproteins/immunology , Metalloendopeptidases/immunology , Receptors, Fc/immunology , Female , Glycosylation , Humans , Immunoglobulin G/blood , Isoantibodies/blood , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...