Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 12(5): e002436, 2019 05.
Article in English | MEDLINE | ID: mdl-31112426

ABSTRACT

Background Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy, found in ≤25% of familial cases. Moreover, TTNtv associated with dilated cardiomyopathy are estimated to be present in 0.5% of the general population. The prognosis of asymptomatic carriers of TTNtv is poorly understood because TTNtv are associated with a highly variable phenotype. We aim to assess the natural history and clinical relevance of TTNtv by analyzing standardized mortality ratios (SMR) in multigenerational pedigrees and in close relatives of present-day patients. Methods Haplotype and genealogical analyses were performed on 3 recurrent TTNtv. Subsequently, the family tree mortality ratio method was used to compare all-cause mortality of subjects at an a priori 50% risk of carrying TTNtv to the general Dutch population. SMRs were stratified for sex, age, and calendar period. Subgroups were compared with Poisson regression. Similarly, SMRs were calculated in parents of 128 present-day dilated cardiomyopathy probands with TTNtv using the reverse parent-offspring method. Results The TTNtv were established as founder mutations and traced to 18th century ancestors. In 20 522 person-years, overall mortality was not significantly increased (SMR, 1.06; 95% CI, 0.95-1.18; P=0.162). However, mortality was significantly increased in subjects living after 1965 (SMR, 1.27; 95% CI, 1.04-1.53; P=0.009) and aged ≥60 years (SMR, 1.17; 95% CI, 1.01-1.35; P=0.02). The reverse parent-offspring analysis showed overall excess mortality (SMR, 1.26; 95% CI, 1.07-1.48; P=0.003), driven by subjects aged ≥60 years. Conclusions The natural history of the analyzed TTNtv shows a relatively mild disease course with significant excess mortality in elderly patients. With increasing life expectancy, TTNtv-associated morbidity and mortality will likely become more prevalent.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/mortality , Connectin/genetics , Adult , Cardiomyopathy, Dilated/history , Connectin/history , Databases, Genetic , Female , Founder Effect , Genetic Variation , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Male , Middle Aged , Mutation , Netherlands , Pedigree , Polymorphism, Single Nucleotide
2.
Ann Neurol ; 84(2): 200-207, 2018 08.
Article in English | MEDLINE | ID: mdl-30014507

ABSTRACT

OBJECTIVE: Developmental delay (DD) with favorable intellectual outcome and mild intellectual disability (ID) are mostly considered to be of complex genetic and environmental origin, but, in fact, often remain unclear. We aimed at proving our assumption that also mild cases of DD and ID may be of monogenic etiology. METHODS: We clinically evaluated 8 individuals and performed exome sequencing or array copy number analysis and identified variants in CUX1 as the likely cause. In addition, we included a case from the public database, DECIPHER. RESULTS: All 9 individuals harbored heterozygous null-allele variants in CUX1, encoding the Cut-homeobox 1 transcription factor that is involved in regulation of dendritogenesis and cortical synapse formation in layer II to IV cortical neurons. Six variants arose de novo, while in one family the variant segregated with ID. Of the 9 included individuals, 2 were diagnosed with moderate ID, 3 with mild ID, and 3 showed a normal age-related intelligence at ages 4, 6, and 8 years after a previous history of significant DD. INTERPRETATION: Our results suggest that null-allele variants, and thus haploinsufficiency of CUX1, cause an isolated phenotype of DD or ID with possible catch-up development. This illustrates that such a developmental course is not necessarily genetic complex, but may also be attributed to a monogenic cause. Ann Neurol 2018;84:200-207.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Haploinsufficiency/genetics , Homeodomain Proteins/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Adult , Child , Child, Preschool , Female , Genetic Variation/genetics , Humans , Male , Transcription Factors
3.
Blood Cells Mol Dis ; 39(1): 70-4, 2007.
Article in English | MEDLINE | ID: mdl-17462922

ABSTRACT

We encountered a homozygous -16C>G mutation in cis at identical positions in the promoters of both human gamma-globin genes in a subject who was also homozygous for Hemoglobin C (HbC). Subsequent analysis of normal control individuals of African American ancestry revealed that both mutations were always present in cis with an allelic frequency of 3%. Furthermore, 10 out of 11 HbC subjects carried the -16C>G sequence variations, suggesting an association with HbC. The -16C>G mutation disrupts a putative CACCC box positioned between the TATA box and the transcriptional start site. However, the absence of high levels of HbF in HbC subjects homozygous and heterozygous for the -16C>G sequence variation suggested no effect of this mutation on gamma-globin gene expression in the adult stage of development. Further functional characterization by means of transient transfections in human erythroleukemic K562 cells showed that the -16C>G promoter sequence variation did not have an effect on gamma-globin expression in the fetal stage of development either. We therefore conclude that the -16C>G gamma-globin sequence variations are not beneficial to the clinical phenotype of HbC. The unique concurrent presence of this non-functional sequence variation is likely the result of a gene conversion event, and supports the concept of sequence homogenization between the two human gamma-globin genes.


Subject(s)
Evolution, Molecular , Gene Expression Regulation/genetics , Globins/genetics , Point Mutation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Adult , Black or African American , Hemoglobin C/genetics , Homozygote , Humans , K562 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...