Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Clin Med ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959212

ABSTRACT

Neurofibromatosis type 1 (NF1) is a rare disease, affecting around 1 in 3500 individuals in the general population. The rarity of the disease contributes to the scarcity of the available diagnostic and therapeutic approaches. Multispectral imaging is a non-invasive imaging method that shows promise in the diagnosis of various skin diseases. The device utilized for the present study consisted of four sets of narrow-band LEDs, including 526 nm, 663 nm, and 964 nm for diffuse reflectance imaging and 405 nm LEDs, filtered through a 515 nm long-pass filter, for autofluorescence imaging. RGB images were captured using a CMOS camera inside of the device. This paper presents the results of this multispectral skin imaging approach to distinguish the lesions in patients with NF1 from other more common benign skin lesions. The results show that the method provides a potential novel approach to distinguish NF1 lesions from other benign skin lesions.

2.
J Biophotonics ; 13(3): e201900162, 2020 03.
Article in English | MEDLINE | ID: mdl-31909557

ABSTRACT

This clinical study is a first attempt to use autofluorescence for recurrence diagnosis of skin cancer in postoperative scars. The proposed diagnostic parameter is based on a reduction in scar autofluorescence, evaluated in the green spectral channel. The validity of the method has been tested on 110 postoperative scars from 56 patients suspected of non-melanoma skin cancer, with eight patients (13 scars) available for the repeated examination. The recurrence diagnosis within a scar has been made after two subsequent autofluorescence check-ups, representing the temporal difference between the scar autofluorescence amplitudes as a vector. The recognition of recurrence has been discussed to represent the significant deviations from the value of vector angle θ. This new autofluorescence-based method can be easily integrated into the postoperative monitoring of surgical scars and can help diagnose the recurrence of skin cancer from the early stage of scar development.


Subject(s)
Cicatrix , Skin Neoplasms , Cicatrix/diagnostic imaging , Humans , Optical Imaging , Skin Neoplasms/diagnostic imaging
3.
Biomed Opt Express ; 9(4): 1852-1858, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29675324

ABSTRACT

A clinical trial on the autofluorescence imaging of skin lesions comprising 16 dermatologically confirmed pigmented nevi, 15 seborrheic keratosis, 2 dysplastic nevi, histologically confirmed 17 basal cell carcinomas and 1 melanoma was performed. The autofluorescence spatial properties of the skin lesions were acquired by smartphone RGB camera under 405 nm LED excitation. The diagnostic criterion is based on the calculation of the mean autofluorescence intensity of the examined lesion in the spectral range of 515 nm-700 nm. The proposed methodology is able to differentiate seborrheic keratosis from basal cell carcinoma, pigmented nevi and melanoma. The sensitivity and specificity of the proposed method was estimated as being close to 100%. The proposed methodology and potential clinical applications are discussed in this article.

SELECTION OF CITATIONS
SEARCH DETAIL