Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 11(5): 1313-21, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26910179

ABSTRACT

Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication.


Subject(s)
HIV Infections/drug therapy , HIV Infections/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Virus Replication/drug effects , Allosteric Regulation/drug effects , HEK293 Cells , HIV Infections/virology , HIV-1/physiology , Humans
2.
Genes Dev ; 29(21): 2287-97, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26545813

ABSTRACT

The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.


Subject(s)
HIV-1/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Virus Integration/genetics , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Introns/genetics , Protein Binding , Protein Structure, Tertiary , RNA Splicing
3.
Nucleic Acids Res ; 42(9): 5917-28, 2014 May.
Article in English | MEDLINE | ID: mdl-24623816

ABSTRACT

We report alterations to the murine leukemia virus (MLV) integrase (IN) protein that successfully result in decreasing its integration frequency at transcription start sites and CpG islands, thereby reducing the potential for insertional activation. The host bromo and extraterminal (BET) proteins Brd2, 3 and 4 interact with the MLV IN protein primarily through the BET protein ET domain. Using solution NMR, protein interaction studies, and next generation sequencing, we show that the C-terminal tail peptide region of MLV IN is important for the interaction with BET proteins and that disruption of this interaction through truncation mutations affects the global targeting profile of MLV vectors. The use of the unstructured tails of gammaretroviral INs to direct association with complexes at active promoters parallels that used by histones and RNA polymerase II. Viruses bearing MLV IN C-terminal truncations can provide new avenues to improve the safety profile of gammaretroviral vectors for human gene therapy.


Subject(s)
Integrases/chemistry , Leukemia Virus, Murine/genetics , RNA-Binding Proteins/chemistry , Viral Proteins/chemistry , Virus Integration , Amino Acid Sequence , Binding Sites , CpG Islands , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Sequence Analysis, DNA , Sequence Deletion , Transcription Factors , Transcription Initiation Site
4.
Nucleic Acids Res ; 42(8): 4868-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24520112

ABSTRACT

The importance of understanding the molecular mechanisms of murine leukemia virus (MLV) integration into host chromatin is highlighted by the development of MLV-based vectors for human gene-therapy. We have recently identified BET proteins (Brd2, 3 and 4) as the main cellular binding partners of MLV integrase (IN) and demonstrated their significance for effective MLV integration at transcription start sites. Here we show that recombinant Brd4, a representative of the three BET proteins, establishes complementary high-affinity interactions with MLV IN and mononucleosomes (MNs). Brd4(1-720) but not its N- or C-terminal fragments effectively stimulate MLV IN strand transfer activities in vitro. Mass spectrometry- and NMR-based approaches have enabled us to map key interacting interfaces between the C-terminal domain of BRD4 and the C-terminal tail of MLV IN. Additionally, the N-terminal fragment of Brd4 binds to both DNA and acetylated histone peptides, allowing it to bind tightly to MNs. Comparative analyses of the distributions of various histone marks along chromatin revealed significant positive correlations between H3- and H4-acetylated histones, BET protein-binding sites and MLV-integration sites. Our findings reveal a bimodal mechanism for BET protein-mediated MLV integration into select chromatin locations.


Subject(s)
Integrases/metabolism , Leukemia Virus, Murine/enzymology , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins , DNA/metabolism , HEK293 Cells , Histones/metabolism , Humans , Integrases/chemistry , Leukemia Virus, Murine/physiology , Protein Binding , Protein Interaction Domains and Motifs , Virus Integration
5.
Proc Natl Acad Sci U S A ; 110(29): 12036-41, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818621

ABSTRACT

The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus, suggestive of targeting by binding to cellular factors. γ-Retroviral murine leukemia virus (MLV) DNA integration into the host genome is favored at transcription start sites, but the underlying mechanism for this preference is unknown. Here, we have identified bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as cellular-binding partners of MLV integrase. We show that purified recombinant Brd4(1-720) binds with high affinity to MLV integrase and stimulates correct concerted integration in vitro. JQ-1, a small molecule that selectively inhibits interactions of BET proteins with modified histone sites impaired MLV but not HIV-1 integration in infected cells. Comparison of the distribution of BET protein-binding sites analyzed using ChIP-Seq data and MLV-integration sites revealed significant positive correlations. Antagonism of BET proteins, via JQ-1 treatment or RNA interference, reduced MLV-integration frequencies at transcription start sites. These findings elucidate the importance of BET proteins for MLV integration efficiency and targeting and provide a route to developing safer MLV-based vectors for human gene therapy.


Subject(s)
Integrases/metabolism , Leukemia Virus, Murine/enzymology , Nuclear Proteins/metabolism , Recombinant Proteins/metabolism , Transcription Factors/metabolism , Transcription Initiation Site/physiology , Virus Integration/physiology , Animals , Azepines , Cell Cycle Proteins , Cell Line, Tumor , Chromatin Immunoprecipitation , HEK293 Cells , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Mass Spectrometry , Mice , NIH 3T3 Cells , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Proteomics/methods , RNA Interference , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Triazoles , Virus Integration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...