Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662238

ABSTRACT

Bladder cancers (BCs) can be divided into 2 major subgroups displaying distinct clinical behaviors and mutational profiles: basal/squamous (BASQ) tumors that tend to be muscle invasive, and luminal/papillary (LP) tumors that are exophytic and tend to be non-invasive. Pparg is a likely driver of LP BC and has been suggested to act as a tumor suppressor in BASQ tumors, where it is likely suppressed by MEK-dependent phosphorylation. Here we tested the effects of rosiglitazone, a Pparg agonist, in a mouse model of BBN-induced muscle invasive BC. Rosiglitazone activated Pparg signaling in suprabasal epithelial layers of tumors but not in basal-most layers containing highly proliferative invasive cells, reducing proliferation but not affecting tumor survival. Addition of trametinib, a MEK inhibitor, induced Pparg signaling throughout all tumor layers, and eradicated 91% of tumors within 7-days of treatment. The 2-drug combination also activated a luminal differentiation program, reversing squamous metaplasia in the urothelium of tumor-bearing mice. Paired ATAC-RNA-seq analysis revealed that tumor apoptosis was most likely linked to down-regulation of Bcl-2 and other pro-survival genes, while the shift from BASQ to luminal differentiation was associated with activation of the retinoic acid pathway and upregulation of Kdm6a, a lysine demethylase that facilitates retinoid-signaling. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients. That muscle invasive tumors are populated by basal and suprabasal cell types with different responsiveness to PPARG agonists will be an important consideration when designing new treatments.

2.
Proc Natl Acad Sci U S A ; 119(30): e2203743119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867836

ABSTRACT

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-ß signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-ß-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-ß interactome. However, molecular events jointly regulated by TGF-ß and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-ß-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-ß-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-ß. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-ß-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-ß-regulated functions.


Subject(s)
Endothelial Cells , Intercellular Junctions , Neovascularization, Physiologic , Transforming Growth Factor beta , WNK Lysine-Deficient Protein Kinase 1 , Animals , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Mice , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Proteolysis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Transforming Growth Factor beta/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , Axl Receptor Tyrosine Kinase
3.
Development ; 149(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35521701

ABSTRACT

The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.


Subject(s)
Cell Transformation, Neoplastic , Urothelium , Cell Differentiation/physiology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Humans , Stem Cells , Urinary Bladder , Urothelium/physiology
4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716260

ABSTRACT

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


Subject(s)
Cell Cycle Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Protein p73/metabolism , Animals , Apoptosis , Cell Cycle/physiology , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/metabolism , Humans , Nuclear Proteins/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Protein p73/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...