Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 135: 181-190, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26376096

ABSTRACT

UNLABELLED: Individual response to an immune challenge results from the optimization of a trade-off between benefits and costs of immune cell activation. Age-related immune disorders may have several mechanistic bases, from immune cell defects to chronic pro-inflammatory status and oxidative imbalance, but we are still lacking experimental data showing the relative importance of each of these mechanisms. Using a proteomic approach and subsequent biochemical validations of proteomics-derived hypotheses, we found age-dependent regulations in the liver of 3-months and 1-year old-mice in response to an acute innate immune activation. Old mice presented a chronic up-regulation of several proteins involved in pathways related to oxidative stress control. Interestingly, these pathways were weakly affected by the innate immune activation in old compared to young individuals. In addition, old mice suffered from lower glutathione-S-transferase activity and from higher oxidative damage at the end of the experiment, thus suggesting that they paid a higher immune-related cost than young individuals. On the whole, our data showed that a substantial fraction of the liver costs elicited by an activation of the innate immune response is effectively related to oxidative stress, and that ageing impairs the capacity of old individuals to control it. SIGNIFICANCE: Our paper tackles the open question of the cost of mounting an innate immune response. Evolutionary biologists are familiar since a long time with the concept of trade-offs among key traits of an organism, trade-offs that shape life history trajectories of species and individuals, ultimately in terms of reproduction and survival. On the other hand, medicine and molecular biologists study the intimate mechanisms of immune senescence and underline that oxidative imbalance is probably playing a key role in the progressive loss of immune function with age. This paper merges the two fields by exploring the nature of the cellular pathways that are mainly affected by age when the innate immunity is triggered. To this purpose, a proteomic approach was used to explore liver protein profiles and provide for the first time convincing data supporting the idea that oxidative stress constitutes a cost of innate immune response in old mice, possibly contributing to senescence. Proteomics-derived hypotheses were furthermore validated using biochemical assays. This paper therefore illustrates the added value of using proteomics to answer evolutionary biology questions, and opens a promising way to study the inter-specific variability in the rates of immune-senescence.


Subject(s)
Aging/metabolism , Immunity, Innate/physiology , Liver/metabolism , Oxidative Stress/physiology , Proteomics , Animals , Male , Mice , Oxidation-Reduction
2.
Front Zool ; 11: 41, 2014.
Article in English | MEDLINE | ID: mdl-24891874

ABSTRACT

BACKGROUND: Life history theories predict that investment in current reproduction comes at a cost for future reproduction and survival. Oxidative stress is one of the best documented mechanisms underlying costs of reproduction to date. However, other, yet to be described molecular mechanisms that play a short term role during reproduction may explain the negative relationships underlying the cost of reproduction. To identify such new mechanisms, we used a global proteomic determination of liver protein profiles in laboratory adult female mice whose litter size had been either reduced or enlarged after birth. This litter size manipulation was expected to affect females by either raising or decreasing their current reproductive effort. At the same time, global parameters and levels of oxidative stress were also measured in all females. RESULTS: Based on plasma analyses, females with enlarged litters exhibited increased levels of oxidative stress at the date of weaning compared to females with reduced litters, while no significant difference was found between both the latter groups and control females. None of the liver proteins related to oxidative balance were significantly affected by the experimental treatment. In contrast, the liver protein profiles of females with enlarged and reduced litters suggested that calcium metabolism and cell growth regulation were negatively affected by changes in the number of pup reared. CONCLUSIONS: Plasma oxidative stress levels in reproductive mice revealed that the degree of investment in reproduction can actually incur a cost in terms of plasmatic oxidative stress, their initial investment in reproduction being close to maximum and remaining at a same level when the energy demand of lactation is reduced. Liver proteomic profiles in reproductive females show that hepatic oxidative stress is unlikely to be involved in the cost of reproduction. Reproductive females rather exhibited liver protein profiles similar to those previously described in laboratory ageing mice, thus suggesting that hepatic cell pro-ageing processes may be involved in the cost of reproduction. Overall, our data illustrate how a proteomic approach can unravel new mechanisms sustaining life-history trade-offs, and reproduction costs in particular.

3.
J Proteome Res ; 12(9): 4122-35, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23837631

ABSTRACT

No biomarker has yet been discovered to identify the reproductive status of the endangered leatherback sea turtle (Dermochelys coriacea). Although vitellogenin (VTG) could be used for this, its sequence is not known in D. coriacea and no quantitative assay has been carried out in this species to date. Using de novo sequencing-based proteomics, we unambiguously characterized sequences of two different VTG isoforms that we named Dc-VTG1 and Dc-VTG2. To our knowledge, this is the first clear evidence of different VTG isoforms and the structural characterization of derived yolk proteins in reptiles. This work illustrates how massive de novo sequencing can characterize novel sequences when working on "exotic" nonmodel species in which even nucleotide sequences are not available. We developed assays for absolute quantitation of these two isoforms using selected reaction monitoring (SRM) mass spectrometry, thus providing the first SRM assays developed specifically for a nonsequenced species. Plasma levels of Dc-VTG1 and Dc-VTG2 decreased as the nesting season proceeded, and were closely related to the increased levels of reproductive effort. The SRM assays developed here therefore provide an original and efficient approach for the reliable monitoring of reproduction cycles not only in D. coriacea, but potentially in other turtle species.


Subject(s)
Reptilian Proteins/chemistry , Turtles/physiology , Vitellogenins/chemistry , Amino Acid Sequence , Animals , Female , Molecular Sequence Data , Nesting Behavior , Protein Isoforms/chemistry , Proteomics , Reptilian Proteins/blood , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Tandem Mass Spectrometry , Vitellogenins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...