Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1048758, 2022.
Article in English | MEDLINE | ID: mdl-36466880

ABSTRACT

Tissue-resident memory T (TRM) cells have emerged as key players in the immune control of melanoma. These specialized cells are identified by expression of tissue retention markers such as CD69, CD103 and CD49a with downregulation of egress molecules such as Sphingosine-1-Phosphate Receptor-1 (S1PR1) and the lymphoid homing receptor, CD62L. TRM have been shown to be integral in controlling infections such as herpes simplex virus (HSV), lymphocytic choriomeningitis virus (LCMV) and influenza. More recently, robust pre-clinical models have also demonstrated TRM are able to maintain melanoma in a dormant state without progression to macroscopic disease reminiscent of their ability to control viral infections. The discovery of the role these cells play in anti-melanoma immunity has coincided with the advent of immune checkpoint inhibitor (ICI) therapy which has revolutionized the treatment of cancers. ICIs that target programmed death protein-1 (PD-1) and cytotoxic T lymphocyte antigen-4 (CTLA-4) have led to substantial improvements in outcomes for patients with metastatic melanoma and have been rapidly employed to reduce recurrences in the resected stage III setting. While ICIs mediate anti-tumor activity via CD8+ T cells, the specific subsets that facilitate this response is unclear. TRM invariably exhibit high expression of immune checkpoints such as PD-1, CTLA-4 and lymphocyte activating gene-3 (LAG-3) which strongly implicates this CD8+ T cell subset as a crucial mediator of ICI activity. In this review, we present pre-clinical and translational studies that highlight the critical role of TRM in both immune control of primary melanoma and as a key CD8+ T cell subset that mediates anti-tumor activity of ICIs for the treatment of melanoma.


Subject(s)
Melanoma , Memory T Cells , Humans , CTLA-4 Antigen , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Melanoma/therapy
2.
Sci Rep ; 11(1): 6363, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737565

ABSTRACT

Abnormal mitochondrial function is a key process in the pathogenesis of Parkinson's disease (PD). The central pore-forming protein TOM40 of the mitochondria is encoded by the translocase of outer mitochondrial membrane 40 homologue gene (TOMM40). The highly variant '523' poly-T repeat is associated with age-related cognitive decline and age of onset in Alzheimer's disease, but whether it plays a role in modifying the risk or clinical course of PD it yet to be elucidated. The TOMM40 '523' allele length was determined in 634 people with PD and 422 healthy controls from an Australian cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort, using polymerase chain reaction or whole genome sequencing analysis. Genotype and allele frequencies of TOMM40 '523' and APOE ε did not differ significantly between the cohorts. Analyses revealed TOMM40 '523' allele groups were not associated with disease risk, while considering APOE ε genotype. Regression analyses revealed the TOMM40 S/S genotype was associated with a significantly later age of symptom onset in the PPMI PD cohort, but not after correction for covariates, or in the Australian cohort. Whilst variation in the TOMM40 '523' polymorphism was not associated with PD risk, the possibility that it may be a modifying factor for age of symptom onset warrants further investigation in other PD populations.


Subject(s)
Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Genetic Predisposition to Disease , Membrane Transport Proteins/genetics , Parkinson Disease/genetics , Age of Onset , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Australia/epidemiology , Cognitive Dysfunction/pathology , Cohort Studies , Female , Gene Frequency , Genetic Association Studies , Humans , Male , Middle Aged , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Parkinson Disease/epidemiology , Parkinson Disease/pathology , Polymorphism, Genetic , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...