Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 60: 81-91, 2016 12.
Article in English | MEDLINE | ID: mdl-28073565

ABSTRACT

Within the framework of research aimed at using genetic methods to evaluate harmful species distribution and their impact on coastal ecosystems, a portion of the ITS1rDNA of Alexandrium minutum was amplified by real-time PCR from DNA extracts of superficial (1-3cm) sediments of 30 subtidal and intertidal stations of the Bay of Brest (Brittany, France), during the winters of 2013 and 2015. Cell germinations and rDNA amplifications of A. minutum were obtained for sediments of all sampled stations, demonstrating that the whole bay is currently contaminated by this toxic species. Coherent estimations of ITS1rDNA copy numbers were obtained for the two sampling cruises, supporting the hypothesis of regular accumulation of A. minutum resting stages in the south-eastern, more confined embayments of the study area, where fine-muddy sediments are also more abundant. Higher ITS1rDNA copy numbers were detected in sediments of areas where blooms have been seasonally detected since 2012. This result suggests that specific genetic material estimations in superficial sediments of the bay may be a proxy of the cyst banks of A. minutum. The simulation of particle trajectory analyses by a Lagrangian physical model showed that blooms occurring in the south-eastern part of the bay are disconnected from those of the north-eastern zone. The heterogeneous distribution of A. minutum inferred from both water and sediment suggests the existence of potential barriers for the dispersal of this species in the Bay of Brest and encourages finer analyses at the population level for this species within semi-enclosed coastal ecosystems.


Subject(s)
Bays/parasitology , Dinoflagellida/physiology , Ecosystem , Environmental Monitoring , Geologic Sediments/parasitology , DNA, Ribosomal/genetics , Dinoflagellida/genetics , France , Real-Time Polymerase Chain Reaction , Water Pollutants, Chemical
2.
J Exp Mar Biol Ecol ; 259(1): 63-84, 2001 Apr 30.
Article in English | MEDLINE | ID: mdl-11325377

ABSTRACT

The primary production and the respiration of Zostera noltii beds in the Thau lagoon were studied by means of the benthic bell jar technique. Concurrently, environmental data (temperature, light and nutrients) as well as morphological data of seagrass meadows (leaf width and height, density of shoots, above/below-ground biomass ratio) were collected with the purpose of explaining most of the observed variations in metabolism. Seagrass plus epiphyte respiration rates were influenced mainly by the water temperature, showing a typical exponential response to an increase in temperature. Surprisingly, measurements of production rates were not related to incoming light intensities recorded at the seagrass canopy level. An equation frequently used for terrestrial standing crops, involving the leaf area index (LAI) and the characteristics of the canopy architecture (parameter K, depending on leaves optical and geometrical properties), was applied to the seagrass ecosystem in order to estimate the light energy actually available for the plants, i.e. the light intercepted by the seagrass canopy (Q(abs)). Linear relationships were then validated between gross production rates and calculated Q(abs) for Z. noltii beds, and the best fits were obtained with K values nearing 0.6, confirming the similarities between terrestrial graminaceae and seagrasses. A linear regression model for primary production is proposed, involving the calculated Q(abs), the water temperature and the leaf nutrient content.

SELECTION OF CITATIONS
SEARCH DETAIL
...