Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(54): e202301789, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37417949

ABSTRACT

The photothermal properties of a series of neutral radical gold-bis(dithiolene) complexes absorbing in the near-infrared-III window (1550-1870 nm) have been investigated. This class of complexes was found to be good photothermal agents (PTAs) in toluene under 1600 nm laser irradiation with photothermal efficiencies around 40 and 60 % depending on the nature of the dithiolene ligand. To the best of our knowledge, these complexes are the first small molecular photothermal agents to absorb so far into the near infrared. To test their applicability in water, these hydrophobic complexes have been encapsulated into nanoparticles constituted by amphiphilic block-copolymers. Stable suspensions of polymeric nanoparticles (NPs) encapsulating the gold-bis(dithiolene) complexes have been prepared which show a diameter around 100 nm. The encapsulation rate was found to be strongly dependent on the nature of the dithiolene ligands. The photothermal properties of the aqueous suspensions containing gold-bis(dithiolene) complexes were then studied under 1600 nm laser irradiation. These studies demonstrate that water has strong photothermal activity in the NIR-III region that, cannot be overcome even with the addition of gold complexes displaying good photothermal properties.

2.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946784

ABSTRACT

Biocompatible nanoparticles (NPs) of hydrophobic poly(benzyl malate) (PMLABe) were prepared by nanoprecipitation. The influence of nanoprecipitation parameters (initial PMLABe, addition rate, organic solvent/water ratio and stirring speed) were studied to optimize the resulting formulations in terms of hydrodynamic diameter (Dh) and dispersity (PDI). PMLABe NPs with a Dh of 160 nm and a PDI of 0.11 were isolated using the optimized nanoprecipitation conditions. A hydrophobic near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex (Ni8C12) was then encapsulated into PMLABe NPs using the optimized nanoprecipitation conditions. The size and encapsulation efficiency of the NPs were measured, revealing that up to 50 weight percent (wt%) of Ni8C12 complex can efficiently be encapsulated with a slight increase in Dh of the corresponding Ni8C12-loaded NPs. Moreover, we have shown that NP encapsulating Ni8C12 were stable under storage conditions (4 °C) for at least 10 days. Finally, the photothermal properties of Ni8C12-loaded NPs were evaluated and a high photothermal efficiency (62.7 ± 6.0%) waswas measured with NPs incorporating 10 wt% of the Ni8C12 complex.


Subject(s)
Malates/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Humans , Malates/therapeutic use , Nanoparticles/therapeutic use , Photothermal Therapy , Polymers/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...