Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-20721280

ABSTRACT

The catalytic decomposition of hydrogen peroxide by Cu(II) complexes with polymers bearing L-alanine (PAla) and glycylglycine (PGlygly) in their side chain was studied in alkaline aqueous media. The reactions were of pseudo-first order with respect to [H(2)O(2)] and [L-Cu(II)] (L stands for PAla or PGlygly) and the reaction rate was increased with pH increase. The energies of activation for the reactions were determined at pH 8.8, in a temperature range of 293-308 K. A suitable mechanism is proposed to account for the kinetic data, which involves the Cu(II)/Cu(I) redox pair, as has been demonstrated by ESR spectroscopy. The trend in catalytic efficiency is in the order PGlygly>PAla, due to differences in modes of complexation and in the conformation of the macromolecular ligands.

2.
J Inorg Biochem ; 98(11): 1795-805, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15522407

ABSTRACT

The antitumor antibiotic Altromycin H was studied using electronic absorption (UV-Vis.) and circular dichroism (CD) spectroscopy. The dissociation constants of the phenolic groups on C(5) and C(11) were estimated as pK(1)=6.7 and pK(2)=11.8 at 25 degrees C, respectively, and a complete assignment of the CD and UV-Vis. bands is proposed. The interaction of Cu(II) ions with the Altromycin H has been also investigated by UV-Vis., CD and electron paramagnetic resonance (EPR) spectroscopy. A pH depended stepwise complex formation was observed. At pH<4 no copper-Altromycin H interactions were detected. At the 4

Subject(s)
Aminoglycosides/chemistry , Antibiotics, Antineoplastic/chemistry , Copper/chemistry , Naphthoquinones/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Spectrophotometry
3.
J Inorg Biochem ; 95(2-3): 177-93, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12763663

ABSTRACT

The interaction of the anticancer antibiotic altromycin B and its isostructrural Pt(II) and Pd(II) metal complexes with native calf thymus (CT) DNA was studied using UV-thermal denaturation experiments, circular dichroism spectroscopy and temperature controlled spectrophotometric titrations. Altromycin B stabilizes the double helix by raising the T(m), mainly by intercalation of its chromophore between the base pairs and interacting electrostatically via its sugar moieties with the edges of the DNA helix. Moreover, altromycin B induces a B-->A structural transition of CT DNA. The effect on DNA stability and conformation depends on the metal ion. Pt(II) and Pd(II) complexes induce the B-->A structural transition and stabilize the double helix similarly but they present lower final hyperchromicity due to premelting effects which were caused by intra- and interstrand crosslinking. Thus, a synergic effect of the metal ions to altromycin B-CT DNA interaction is observed in both cases. Altromycin B interacts with 5'-GMP, 5'-AMP and 5'-CMP by electrophilic attack of the opened epoxide ring to the N(7)G, N(1)/N(7)A and N(3)C. Thus, covalent binding between these nucleotides and altromycin B takes place and explain the multiple binding mode suggested by the studies of the interaction of altromycin B and its complexes with DNA. The [Pd(II)-altroB] complex dissociates in the presence of the nucleotides, and various species of Pd(II)-nucleotide complexes, especially with 5'-GMP, are formed. The [Pt(II)-altroB] complex dissociates too, but only one or two species of Pt(II)-nucleotide complexes are formed, and in the case of 5'-AMP interaction the formation of a tertiary altroB-Pt(II)-5'AMP complex is proposed. 5'-TMP reacts very weakly in comparison with the other three nucleotides. These interactions were followed by 1H-NMR.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents/chemistry , Antibiotics, Antineoplastic/chemistry , DNA/chemistry , Nucleotides/chemistry , Palladium/chemistry , Platinum/chemistry , Animals , Cattle , Circular Dichroism , Hot Temperature , Intercalating Agents/chemistry , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Nucleic Acid Denaturation , Organometallic Compounds/chemistry , Spectrophotometry, Ultraviolet/methods
4.
J Inorg Biochem ; 89(1-2): 131-41, 2002 Apr 10.
Article in English | MEDLINE | ID: mdl-11931973

ABSTRACT

Interaction of the anticancer antibiotic altromycin B with Cu(II), Pd(II) and Pt(II) ions was studied using 1H-NMR, EPR, electronic absorption and circular dichroism spectroscopy. The results derived from NMR studies where that the Pt(II) and Pd(II) ions interact with the nitrogen atom of the dimethylamino group of the C(10)-disaccharide, while the C(2)-epoxide group does not participate and remains intact. Cu(II) ions interact in a different way with altromycin B as was concluded by EPR and circular dichroism spectra. Altromycin B coordinates to the Cu(II) ions via the oxygen atoms of the C(11) phenolic and the C(12) carbonyl group while the nitrogen atom does not participate in the complexation. The presence of these metal ions improves the stability of altromycin B in solution. These complexes were studied in vitro against K562 leukemia sensitive and doxorubicin-resistant cells and GLC4 lung tumor cells, sensitive and doxorubicin-resistant. The activity of the complexes compared to the free drug is improved against resistant cells and is affected moderately against sensitive cells. Finally, 20% of platinum added as altromycin B metal complex entered GLC4 cells.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Copper/metabolism , Palladium/metabolism , Platinum/metabolism , Cell Survival/drug effects , Circular Dichroism , Electron Spin Resonance Spectroscopy , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Spectrophotometry, Atomic , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...